SDNS007B - OCTOBER 1993 - REVISED JUNE 1995

- Provides SONET Interface to Any Type of Payload
- Programmable STS-1 or STS-N Modes
- Receives Bit-Serial STS-1 Signals to Line Side Using External Reference Frame-Pulse Input for STS-N Applications
- Transmits Bit-Serial STS-1 Signals From Line Side Using External Reference Frame Pulse for Outgoing Phase Synchronization
- Transmits Bit-Serial STS-1 Signals From Line Side Using External Reference Frame Pulse for Outgoing Phase Synchronization
- Programmable Full STS-1 or SPE-Only I/O on Terminal Side

description

 Bit-Serial or Byte-Parallel I/O on Terminal Side

- Optional AIS Communication With Another TNETS3001 or TNETS3003
- Interface to Microprocessors With Hierarchical Scan and Optional Hardware Interrupt on Alarms
- SONET Alarm Processing Performance Monitoring
- Meets 1991 ANSI/Bellcore Standards: - T1X1.5/90-025R1
 - TA-NWT-000253

The TNETS3001, synchronous optical network (SONET) overhead terminator, performs section overhead, line overhead, and path overhead signal processing at the STS-1 (51.84 Mbit/s) data rate. Repeaters, line-termination points, and path termination points are just a few applications that use the versatile TNETS3001. The TNETS3001 contains three status registers, seven control registers, transport overhead RAM, and path overhead RAM; a line-side interface, terminal-side interface, orderwire/APS interface, datacom interface, and microprocessor interface are also integrated into a single 84-pip plastic chip carrier, which is suitable for socket

overhead RAM; a line-side interface, terminal-side interface, orderwire/APS interface, datacom interface, and microprocessor interface are also integrated into a single 84-pin plastic chip carrier, which is suitable for socket or surface mounting. Status and control registers configure the device and allow for different line-side and terminal-side clock rates (receive/transmit pointer is recalculated as necessary to compensate for the clock differences); the registers also enable the overhead terminator to perform loopback and serial/parallel inputs or outputs. All transport and path overhead bytes are stored in the device RAM. Depending on the application, new overhead bytes are substituted from RAM to either terminal or line side. Besides software and hardware interrupts, alarm detection and alarm-indication signal (AIS) generation are provided. The device is controlled via a 9-bit address bus and an 8-bit interleaved data bus.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

PRODUCT PREVIEW information concerns products in the formative or design phase of development. Characteristic data and other specifications are design goals. Texas Instruments reserves the right to change or discontinue these products without notice.

Copyright © 1995, Texas Instruments Incorporated

SDNS007B - OCTOBER 1993 - REVISED JUNE 1995

FN PACKAGE (TOP VIEW)

SDNS007B - OCTOBER 1993 - REVISED JUNE 1995

RXRTM - See control register 9, bit 1 SPE - See control register 5, bit 7

functional block diagram

TRLOOP - See control register 0, bit 0 RTLOOP - See control register 3, bit 0

detailed description

The input multiplexer MUX 1 shown in the functional block diagram selects either the line-side input or the loopback signal from the transmit-line output as the input to the framing and pointer-tracking function. The framing and pointer-tracking function performs frame synchronization to the incoming STS-1 signal, serial-to-parallel conversion, and pointer tracking; incoming STS-1 alarms are also detected. The overhead-processing function stores the line, section, and path-overhead bytes into RAM locations for access by the microprocessor. It then optionally multiplexes the line, section, and path-overhead bytes from the RAM locations written by the microprocessor. Incoming SONET performance-monitoring functions and debouncing of selected overhead bytes are also performed by the overhead-processing function. The orderwire/datacom extract function extracts and routes the section and line data-communication bytes to the two datacom interfaces and the APS and the two orderwire bytes to the orderwire interface.

PRODUCT PREVIEW

SDNS007B - OCTOBER 1993 - REVISED JUNE 1995

detailed description (continued)

The receive-retiming function retimes the line input to the reference frequency, performs pointer recalculation, and SPE-only extraction. All transport-overhead bytes are demultiplexed and the payload is retimed. The reference clock used for retiming is selected by MUX 2 as either the line clock (RLCI) or the reference clock TLCI. The terminal-side output multiplexer MUX 3 allows selection of either the output of the overhead-processing function or the output of the receive-retiming function.

In the transmit direction, the SPE-only signal to STS-1 function receives serial SPE-only signals from the terminal and introduces framing and pointer bytes to produce a parallel STS-1 signal. The parallel-to-serial function uses the phase-lock loop (PLL) to serialize either the data from the SPE-only function or parallel input from the terminal. The MUX 5 multiplexer selects the input to the transmit-framing and the pointer-tracking function from either loopback data from the output of the receive-side overhead-processing function or the output of the parallel-to-serial STS-1 input from the terminal.

The framing and pointer-tracking function performs frame synchronization to the serial STS-1 signal, serial-to-parallel conversion, and pointer tracking. Incoming STS-1 alarms are also detected. The section, line, and path-overhead bytes are stored into RAM locations for access by the microprocessor. The path-overhead bytes are then optionally multiplexed from the RAM locations written by the microprocessor.

The transmit-retiming function performs retiming to the reference frequency and pointer recalculation. The transport-overhead multiplexer optionally multiplexes the section and line overhead bytes from the RAM written by the microprocessor. The orderwire/datacom insert optionally multiplexes the orderwire, datacom and APS bytes from the two datacom interfaces and the orderwire interface into the transmit outgoing transport-overhead RAM locations.

The transport-overhead RAMs consist of locations for storing received incoming transport-overhead bytes, received outgoing transport-overhead bytes (written by the microprocessor), transmitted incoming transport-overhead bytes, and transmitted outgoing transport-overhead bytes. It also stores B1 and B2 performance monitors and pointer-justification counters. The RAM also acts as a temporary storage for datacom and orderwire bytes received from the respective interfaces.

The path-overhead RAMs consist of locations for storing received incoming path-overhead bytes, received outgoing path-overhead bytes (written by the microprocessor), transmitted incoming path-overhead bytes, and transmitted outgoing path-overhead bytes. It also stores B3 and FEBE performance monitors.

The microprocessor interface provides access to the control registers that select various modes of operation and status registers that report various alarm conditions. It also provides access to the transport- and pathoverhead RAMs and provides both software and hardware interrupt capability based on the status of the device.

When in the serial mode (PABA = 0) with SPE = 1, the terminal output of the TNETS3001 contains payload bits but no transport-overhead (TOH) bits (see the TNETS3001 memory map section of this data sheet). The RSPE output provides a gapping signal for the SPE-only mode of operation. Nominally, there are 24 bits (8×3) of TOH and 696 bits (8×87) of payload. For this circumstance, the RSPE provides 24 equally spaced gaps in the output data (720/24 = 30, every 30th bit is gapped). When there is an increment in the pointer, there must be 32 equally spaced gaps and when there is a decrement, there are 16 equally spaced gaps for the row containing the pointer bytes.

SDNS007B - OCTOBER 1993 - REVISED JUNE 1995

Terminal Functions

power supply

	TERMINAL		DESCRIPTION		
NAME	ME NO.		DESCRIPTION		
AGND	56	0	Analog ground		
AVCC	58	I	Analog supply voltage, 5 V \pm 5%		
GND	5, 14, 24, 62, 68, 78	0	Digital ground		
Vcc	1, 17, 28, 47, 69	I	Supply voltage, 5 V \pm 5 %		

microprocessor interface

TERMI	TERMINAL		DESCRIPTION				
NAME	NO.	1/0					
A8	22	I TTL	Address bus. This is bit 8 of the address bus.				
AD7-AD4 AD3-AD2 AD1-AD0	21-18 16-15 13-12	I/O TTL	Address/data bus. These signals provide the time-multiplexed address and data interface between the microprocessor and internal RAM.				
ALE	32	I TTL	Address latch enable. ALE is an active-high signal provided by the microprocessor that latches the address into a TNETS3001 address latch for a bus cycle.				
INT	33	O TTL	Interrupt. INT is an active-high signal that confirms an interrupt request to the microprocessor. The hardwar interrupt request is enabled by HINT = 1 (bit 5, address 0FA).				
RD	25	I TTL	Read. $\overline{\text{RD}}$ is an active-low input generated by the microprocessor for reading the TNETS3001.				
RDY	31	0	Ready. RDY is an active-high acknowledgment from the TNETS3001 that indicates a transfer can be completed. RDY goes low when the address being read or written to corresponds to a RAM location. When status or control registers are accessed, RDY remains high. RDY is an open-drain output capable of sinking a maximum of 16 mA. The value of the pullup resistor depends on the number of devices that use the RDY signal in the system.				
RST	63	I TTL	Reset. RST resets all internal counters and sets all alarms. RST is a positive pulse with a minimum width of 300 ns. RST must be used after power is applied, registers are initialized, and the clocks are stable.				
SEL	34	I TTL	Select. SEL is an active-low signal that enables data transfers between the microprocessor and TNETS3001 RAM during a read/write bus cycle.				
WR	23	I TTL	Write. \overline{WR} is an active-low signal generated by the microprocessor for writing to the TNETS3001.				

SDNS007B - OCTOBER 1993 - REVISED JUNE 1995

Terminal Functions (Continued)

receive line-side interface

	TERMINAL		DESCRIPTION		
NAME	NO.				
RFRI	6	I CMOS	Receive-line frame in. RFRI is an optional active-low frame pulse that occurs during the C1 byte, bit 7 time. When used, RFRI reduces the OOF exit time from two frames to one frame.		
RLCI	8	I CMOS	Receive-line clock in. RLCI is a 51.84-MHz clock that clocks in the serial data and the optional framing pulse. RLCI is used as the time base for framing, pointer tracking, demultiplexing the transport-overhead bytes, and for RAM access in the receive side.		
RLDI	7	I CMOS	Receive-line data in. RLDI is the incoming serial STS-1/STS-N data that is clocked into the TNETS3001 on the rising edge of RLCI.		
RXLOS	9	I TTL	Receive loss of signal. RXLOS is an active-low external loss-of-signal indicator from a higher multiplexer such as an SM3. TNETS3001 combines RXLOS with the internal loss of signal and reports the result to the microprocessor as the RLOS status bit.		

transmit line-side interface

TERMIN NAME	NAL NO.	I/O	DESCRIPTION
TFRI	30	I CMOS	Transmit-frame reference in. $\overline{\text{TFRI}}$ is an optional active-low frame pulse, synchronous with TLCI, that determines outgoing A1A2 epoch. TFRI can be used only if TCLK = 1 (bit 6 address 1FA).
TLCI	29	I CMOS	Transmit line-side clock in. TLCI is the 51.84-MHz reference-clock input.
TLCO	27	O CMOS	Transmit line-side clock out. TLCO is an outgoing serial STS-1/STS-N clock. Depending on the operating mode, TLCO is derived from TLCI, TTCI, or TPCI.
TLDO	26	O CMOS	Transmit line-side data out. TLDO is outgoing serial STS-1/STS-N data that is clocked out of the TNETS3001 on the falling edge of TLCO.

orderwire/APS interface

TERMI	NAL	1/0	DESCRIPTION				
NAME	NO.	1/0					
LRFR	65	O TTL	Receive-line orderwire-framing pulse. LRFR is an active-low signal that occurs one clock cycle after the LSB of the K2 byte in the serial-bit stream (OTDO).				
LTFR	39	O TTL	Transmit-line orderwire-framing pulse. LTFR is the transmit-frame pulse for line-orderwire codec/filter.				
ORCO	70	O TTL	Receive orderwire and APS clock. ORCO is a 576-kHZ clock, derived from RLCI, used for clocking the orderwire and APS bytes from the TNETS3001.				
ORDO	67	O TTL	Receive-orderwire byte and APS-byte output. The two orderwire bytes and APS bytes are clocked out of th INETS3001 on positive transitions of ORCO.				
отсо	42	O TTL	Transmit orderwire and APS clock. OTCO is a 576-kHz clock, synchronous to TLCO, used for sourcing the orderwire and APS bytes into the TNETS3001.				
OTDI	41	I TTL	Transmit-orderwire byte and APS-byte input. The two orderwire bytes and APS bytes are clocked into the TNETS3001 on negative transitions of OTCO.				
RAP	66	O TTL	Receive APS framing pulse. \overline{RAP} is an active-low signal that occurs one clock cycle after the LSB of the K2 byte in the serial-bit stream (OTDO).				
SRFR	64	O TTL	Receive-section orderwire-framing pulse. SRFR is the receive-frame pulse for section-orderwire codec/filter.				
STFR	38	O TTL	Transmit-section orderwire-framing pulse. STFR is the transmit-frame pulse for section-orderwire codec/filter.				
TAP	40	O TTL	Transmit APS-framing pulse. TAP is an active-low signal that occurs one clock cycle before the MSB of the K1 byte is expected in the serial-bit stream (OTDI).				

SDNS007B - OCTOBER 1993 - REVISED JUNE 1995

Terminal Functions (Continued)

			DESCRIPTION		
NAME	NO.				
STDI	43	I TTL	Transmit section data-communication data input. STDI is serial 192-kbit/s data (D1 – D3 bytes) clocked into the TNETS3001 on positive transitions of STCO.		
STCO	44	O TTL	Transmit section data-communication clock output. STCO is a 192-kHz clock, derived from TLCO, used for sourcing the section data-communication data into the TNETS3001.		
LTDI	45	I TTL	Transmit line data-communication data input. LTDI is serial 576-kbit/s data (D4 – D12 bytes) clocked into the TNETS3001 on positive transitions of LTCO.		
LTCO	46	O TTL	Transmit line data-communication clock output. LTTCO is a 576-kHz clock, derived from TLCO, used for sourcing the line data-communication data into the TNETS3001.		
SRDO	71	O TTL	Receive section data-communication data output. SRDO is serial 192-kbit/s data (D1 – D3 bytes) clocked out of the TNETS3001 on positive transitions of SRCO.		
LRCO	72	O TTL	Receive line data-communication clock output. LRCO is a 576-kHz clock, derived from RLCI, used for clocking out the line data-communication serial data.		
LRDO	73	O TTL	Receive line data-communication data output. LRDO is serial 576-kbit/s data (D4 – D12 bytes) clocked out of the TNETS3001 on negative transitions of LRCO.		
SRCO	74	O TTL	Receive section data-communication clock output. SRCO is a 192-kHz clock, derived from RLCI, used for clocking out the section data-communication data.		

section and line data-communication interface

terminal-side interface

TERMINAL	TERMINAL		DESCRIPTION
NAME	NO.	1/0	DESCRIPTION
RTCO	3	I/O CMOS	Receive terminal-side clock output. RTCO is a 51.84-MHz terminal clock used for clocking out RTDO. Depending on operating mode, RTCO is derived either from RLCI or TLCI.
RTDO	4	O CMOS	Receive terminal-side data output. RTDO is serial 51.84-Mbit/s STS-1 receive data clocked out of the TNETS3001 on negative transitions of RTCO.
RSPE	10	O CMOS	Receive terminal-side SPE indication. RSPE is an active-high signal that indicates the synchronous payload envelope in the terminal data output (RTDO or TPDO). For SPE-only mode, RSPE is a gapping signal.
RSYN	75	O CMOS	Receive terminal-side synchronization pulse. RSYN is high during the C1 byte and J1 byte of RTDO or TPDO. In serial SPE-only mode, RSYN is high only during the J1 byte of RTDO.
TPCO	2	O TTL	Terminal-side parallel-clock output. TPCO is a 6.48-MHz clock, derived from RTCO, that clocks out received terminal byte data (TPDO).
TPDO7-TPDO2 TPDO1-TPDO0	84–79 77–76	O TTL	Terminal-side parallel-data output. Byte-wide 6.48-Mbyte/s receive terminal data is clocked out of the TNETS3001 on positive transitions of TPCO.
TTCI	60	I CMOS	Transmit terminal-side serial-clock input. TTCI is a 51.84-MHz terminal clock used for clocking in TTDI.
TTDI	61	I CMOS	Transmit terminal-side data input. TTDI is serial 51.84-Mbit/s transmit terminal data clocked into the TNETS3001 on positive transitions of TTCI.
TSPE	36	I CMOS	Transmit terminal-side SPE indication. TSPE is required input for the SPE-only mode. A high value indicates the location of the SPE bits in TTDI. A low value identifies the location of a gap in the input data.
TSYN	37	I CMOS	Transmit terminal-side synchronization pulse. TSYN is required input for the SPE-only mode. TSYN must be high during incoming J1 byte of TTDI or TPDI in the SPE-only mode. A high value during the C1 byte of the data is optional.
TPCI	59	I CMOS	Terminal-side parallel-clock input. TPCI is a 6.48-MHz clock used for clocking TPDI, TSPE, and TSYN.
TPDI7-TPDI0	48–55	I TTL	Terminal-side parallel-data input. TPDI7-TPDI0 is byte-wide 6.48-Mbyte/s transmit terminal data clocked into the TNETS3001 on positive transitions of TPCI.

SDNS007B - OCTOBER 1993 - REVISED JUNE 1995

Terminal Functions (Continued)

alarm-indication ports

TERMINAL		1/0	DESCRIPTION				
NAME	NO.		DEGONITION				
RAIS	11	O TTL	Receive alarm-indication signal. RAIS is an active-low signal indicating that a downstream AIS must be generated. RAIS is activated when PTE =1 or LTE =1 and any of the following conditions are active: RLOC, RLOS, RLOF, RLAIS, RLOP, RPAIS.				
TAIS	35	I TTL	Transmit alarm-indication signal. TAIS is an active-low input that causes AIS to be introduced into the transmit line.				

phase-lock loop

TERMINAL NAME NO.		I/O	DESCRIPTION
TCAP	TCAP 57 I/O		External resistor capacitor. TCAP is a 1.2-k Ω , 1/4 W, 5% carbon composition resistor in series with a 1000-pF capacitor connected to analog ground. The RC network is required when the terminal interface is used in the following modes: parallel and SPE only.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)[†]

Supply voltage range, V _{CC} (see Note 1)	\ldots -0.3 V to 7 V
Input voltage range, V ₁	-0.5 V to V _{CC} + 0.5 V
Operating free-air temperature range, T _A	−40°C to 85°C
Operating junction temperature	150°C
	−55°C to 150°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTE 1: All voltage values are with respect to GND.

recommended operating conditions

			MIN	NOM	MAX	UNIT	
VCC	Supply voltage		4.75	5	5.25	V	
AVCC	Supply voltage, analog		4.75	5	5.25	V	
VIH		CMOS	3.15				
		CMOS (see Note 2)	2			v	
	High-level input voltage	TTL	2				
		TTL (see Note 3)	2				
		CMOS			1.65		
Ma		CMOS (see Note 2)			0.8	V	
VIL	Low-level input voltage	TTL			0.8	v	
				0.8			

NOTES: 2. Input has a 100-k Ω internal pullup resistor.

SDNS007B - OCTOBER 1993 - REVISED JUNE 1995

electrical characteristics over recommended ranges of operating free-air temperature and supply voltage (unless otherwise noted)

	PARAMETER		TEST CON	DITIONS	MIN TYP	MAX	UNIT
		4-mA TTL		$I_{OH} = -2 \text{ mA}$	V _{CC} -0.5		V
VOH	High-level output voltage	8-mA TTL		1011- 100	V _{CC} -0.5		V
		4-mA CMOS]	$I_{OH} = -4 \text{ mA}$	V _{CC} -0.5		V
		4-mA TTL	V _{CC} = 4.75 V	I _{OL} = 4 mA		0.4	V
Vei		4-mA CMOS		I _{OL} = 4 μA		0.4	V
VOL	Low-level output voltage	8-mA TTL		I _{OL} = 8 mA		0.4	V
		16-mA open drain		I _{OL} = 16 mA		0.4	V
		TTL				10	μA
II.	Input current	CMOS	V _{CC} = 5.25 V			10	μA
		CMOS (see Note 2)	1		50	120	μΑ
١L	Low-level input current, TTL (see	e Note 3)	V _{CC} = 5.25 V,	V _I = 0	0.5	1.4	mA
ICC	Supply current						mA
AICC	Supply current, analog						mA
Ci	Input capacitance					5.5	pF

operating characteristics over recommended ranges of operating free-air temperature and supply voltage

	PARAMETER		TEST CONDITION	IS	MIN	MAX	UNIT
t _r	Rise time, TTL	Cu - 15 pE					
t _f	Fall time, TTL	CL = 15 pr,	$I_{OL} = 4 \text{ mA},$	OH = -2 IIIA			ns
tr	Rise time, TTL	Cu - 25 pE	lo 9 m/				
t _f	Fall time, TTL	CL = 25 pr,	I _{OL} = 8 mA,	$I_{OH} = -4 \text{ mA}$			ns
tr	Rise time, CMOS	0. 15 pF	la: 4 m A	1			
t _f	Fall time, CMOS	$C_L = 15 \text{ pr},$	$I_{OL} = 4 \text{ mA},$	OH = -4 MA			μs
tf	Fall time, open drain	C _L = 15 pF,	I _{OL} = 6 mA				ns

SDNS007B - OCTOBER 1993 - REVISED JUNE 1995

timing requirements, $C_L = 15 \text{ pF}$ (see Note 4 and Figure 1)

NO.			MIN	NOM	MAX	UNIT
1	^t c(RLCI)	Clock cycle time, RLCI		19.29		ns
2	^t w(RLCIH)	Pulse duration, RLCI high		9.65		ns
3	^t w(RLCIL)	Pulse duration, RLCI low		9.65		ns
4	^t su(RLDI)	Setup time, RLDI valid before RLCI↑				ns
4	^t su(RFRI)	Setup time, RFRI↓ before RLCI↑				ns
5	^t h(RLDI)	Hold time, RLDI valid after RLCI↑				ns
5	^t h(RFRI)	Hold time, RFRI↑ after RLCI↑				ns

NOTE 4: Timing intervals are measured at $(V_{OH} - V_{OL})/2$ or $(V_{IH} - V_{IL})/2$ as applicable.

Figure 1. Line-Side Input Timing

SDNS007B - OCTOBER 1993 - REVISED JUNE 1995

NO.			MIN	NOM	MAX	UNIT
1	^t c(TLCI)	Clock cycle time, TLCI		19.29		ns
2	^t w(TLCI-H)	Pulse duration, TLCI high		9.65		ns
3	^t w(TLCI-L)	Pulse duration, TLCI low		9.65		ns
4	^t su(TFRI)	Setup time, TFRI low before TLCI↑				ns
5	^t h(TFRI)	Hold time, TFRI high after TLCI↑				ns

timing requirements, $C_L = 15 \text{ pF}$ (see Notes 4 and 5, and Figure 2)

NOTES: 4: Timing intervals are measured at $(V_{OH}-V_{OL})/2$ or $(V_{IH}-V_{IL})/2$ as applicable.

5. TFRI can be used only if the control bit TCLK = 1.

operating characteristics, C_L = 15 pF (see Notes 4 and 5, and Figure 2)

NO.		MIN	NOM	MAX	UNIT
6	t _{d(TLCO)} Delay time, TLCI [↑] to TLCO [↑]				ns
7	td(TLDO) Delay time, TLCO↓ to TLDO valid				ns

NOTES: 4: Timing intervals are measured at $(V_{OH}-V_{OL})/2$ or $(V_{IH}-V_{IL})/2$ as applicable. 5. TFRI can be used only if the control bit TCLK = 1.

Figure 2. Line-Side Output Timing

SDNS007B - OCTOBER 1993 - REVISED JUNE 1995

operating characteristics, C_L = 15 pF (see Note 4 and Figure 3)

NO.			MIN	TYP	MAX	UNIT
1	^t c(ORCO)	Clock cycle time, ORCO		1736		ns
2	^t w(ORCO-H)	Pulse duration, ORCO high		868		ns
3	^t w(ORCO-L)	Pulse duration, ORCO low		868		ns
4	^t d(SRFR)	Delay time, ORCO \uparrow to SRFR \uparrow				ns
4	^t d(LRFR)	Delay time, ORCO↑ to LRFR↑				ns
5	^t d(RAP)	Delay time, ORCO \uparrow to $\overline{RAP}\downarrow$				ns

NOTE 4: Timing intervals are measured at $(V_{OH}-V_{OL})/2$ or $(V_{IH}-V_{IL})/2$ as applicable.

SDNS007B - OCTOBER 1993 - REVISED JUNE 1995

timing requirements, $C_L = 15 \text{ pF}$ (see Note 4 and Figure 4)

NO.			MIN	MAX	UNIT
1	^t su(OTDI)	Setup time, OTDI valid before OTCO \downarrow			ns
2	^t h(OTDI)	Hold time, OTDI valid after OTCO \downarrow			ns

operating characteristics, C_L = 15 pF (see Note 4 and Figure 4)

NO.			MIN	TYP	MAX	UNIT
3	^t c(OTCO)	Clock cycle time, OTCO		1736		ns
4	^t w(ORCOH)	Pulse duration, ORCO high		868		ns
5	^t w(OTCOL)	Pulse duration, ORCO low		868		ns
6	^t d(LTFR)	Delay time, OTCO↑ to LTFR↑				ns
6	^t d(STFR)	Delay time, OTCO↑ to STFR↑				ns
7	^t d(TAP)	Delay time, OTCO \downarrow to TAP \downarrow				ns

NOTE 4: Timing intervals are measured at $(V_{OH} - V_{OL})/2$ or $(V_{IH} - V_{IL})/2$ as applicable.

SDNS007B - OCTOBER 1993 - REVISED JUNE 1995

operating characteristics, $C_L = 15 \text{ pF}$ (see Note 4 and Figure 5)

NO.			MIN	TYP	MAX	UNIT
1	^t c(SRCO)	Clock cycle time, SRCO		5.21		μs
2	^t w(SRCOH)	Pulse duration, SRCO high		2.6		μs
3	^t w(SRCOL)	Pulse duration, SRCO low		2.6		μs
4	^t d(SRDO)	Delay time, SRCO↓ to SRDO valid				

NOTE 4: Timing intervals are measured at $(V_{OH}-V_{OL})/2$ or $(V_{IH}-V_{IL})/2$ as applicable.

Figure 5. Section-Datacom-Channel Output Timing

operating characteristics, $C_L = 15 \text{ pF}$ (see Note 4 and Figure 6)

NO.			MIN	TYP	MAX	UNIT
1	^t c(LRCO)	Clock cycle time, LRCO		1736		ns
2	^t w(LRCOH)	Pulse duration, LRCO high		868		ns
3	^t w(LRCOL)	Pulse duration, LRCO low		868		ns
4	^t d(LRDO)	Delay time, LRCO \downarrow to LRDO valid				ns

NOTE 4: Timing intervals are measured at (V_{OH}-V_{OL})/2 or (V_{IH}-V_{IL})/2 as applicable.

Figure 6. Line-Datacom-Channel Output Timing

SDNS007B - OCTOBER 1993 - REVISED JUNE 1995

timing requirements, $C_L = 15 \text{ pF}$ (see Note 4 and Figure 7)

NO.			MIN	MAX	UNIT
1	^t su(STDI)	Setup time, STDI valid before STCO \downarrow			ns
2	^t h(STDI)	Hold time, STDI valid after STCO \downarrow			ns

operating characteristics, C_L = 15 pF (see Note 4 and Figure 7)

NO.			MIN	TYP	MAX	UNIT
3	^t c(STCO)	Clock cycle time, STCO		5.21		μs
4	^t w(STCOH)	Pulse duration, STCO high		2.6		μs
5	^t w(STCOL)	Pulse duration, STCO low		2.6		μs

NOTE 4: Timing intervals are measured at $(V_{OH} - V_{OL})/2$ or $(V_{IH} - V_{IL})/2$ as applicable.

Figure 7. Section-Datacom-Channel Input Timing

timing requirements, $C_L = 15 \text{ pF}$ (see Note 4 and Figure 8)

NO.			MIN	MAX	UNIT
1	^t su(LTDI)	Setup time, LTDI valid before LTCO↑			ns
2	^t h(LTDI)	Hold time, LTDI valid after LTCO↑			ns

operating characteristics, C_L = 15 pF (see Note 4 and Figure 8)

NO.			MIN	NOM	MAX	UNIT
3	^t c(LTCO)	Clock cycle time, LTCO		1736		ns
4	^t w(LTCOH)	Pulse duration, LTCO high		868		ns
5	^t w(LTCOL)	Pulse duration, LTCO low		868		ns

NOTE 4: Timing intervals are measured at $(V_{OH} - V_{OL})/2$ or $(V_{IH} - V_{IL})/2$ as applicable.

Figure 8. Line-Datacom-Channel Input Timing

SDNS007B - OCTOBER 1993 - REVISED JUNE 1995

NO.			MIN	TYP	MAX	UNIT
1	^t c(TPCO)	Clock cycle time, TPCO		154.3		ns
2	^t w(TPCOH)	Pulse duration, TPCO high		77.2		ns
3	^t w(TPCOL)	Pulse duration, TPCO low		77.2		ns
4	^t d(TPDO)	Delay time, TPCO↑ to TPDO				ns
4	^t d(RSPE)	Delay time, TPCO \uparrow to RSPE \downarrow				ns
5	^t d(RSYN)	Delay time, TPCO↑ to RSYN↑				ns

operating characteristics, $C_L = 15 \text{ pF}$ (see Note 4 and Figure 9)

NOTE 4: Timing intervals are measured at $(V_{OH} - V_{OL})/2$ or $(V_{IH} - V_{IL})/2$ as applicable.

NOTES: A. Pointer movements are indicated by RSPE in subframe No. 4. B. J1 can be anywhere in the payload.

Figure 9. Terminal Parallel STS-1 and Parallel SPE-Only Output Timing

timing requirements, $C_L = 15 \text{ pF}$ (see Note 4 and Figure 10)

NO.			MIN	NOM	MAX	UNIT
1	^t c(TPCI)	Clock cycle time, TPCI		154.3		ns
2	^t w(TPCIH)	Pulse duration, TPCI high		77.2		ns
3	^t w(TPCIL)	Pulse duration, TPCI low		77.2		ns
4	^t su(TPDI)	Setup time, TPDI valid before TPCI↑				ns
5	^t h(TPDI)	Hold time, TPDI valid after TPCI↑				ns

NOTE 4: Timing intervals are measured at $(V_{OH} - V_{OL})/2$ or $(V_{IH} - V_{IL})/2$ as applicable.

Figure 10. Terminal Parallel STS-1 Input Timing

SDNS007B - OCTOBER 1993 - REVISED JUNE 1995

-				
NO.			MIN TYP M	AX UNIT
1	^t c(RTCO)	Clock cycle time, RTCO	19.29	ns
2	^t w(RTCOH)	Pulse duration, RTCO high	9.65	ns
3	^t w(RTCOL)	Pulse duration, RTCO low	9.65	ns
4	^t d(RTDO)	Delay time, RTCO \downarrow to RTDO valid		ns

operating characteristics, C_L = 15 pF (see Note 4 and Figure 11)

NOTE 4: Timing intervals are measured at $(V_{OH}-V_{OL})/2$ or $(V_{IH}-V_{IL})/2$ as applicable.

Figure 11. Terminal Serial STS-1 Output Timing

timing requirements, $C_L = 15 \text{ pF}$ (see Note 4 and Figure 12)

NO.			MIN	NOM	MAX	UNIT
1	^t c(TTCI)	Clock cycle time, TTCI		19.29		ns
2	^t w(TTCIH)	Pulse duration, TTCI high		9.65		ns
3	^t w(TTCIL)	Pulse duration, TTCI low		9.65		ns
4	^t su(TTDI)	Setup time, TTDI valid before TTCI↑				ns
5	^t h(TTDI)	Hold time, TTDI valid after TTCI↑				ns

NOTE 4: Timing intervals are measured at $(V_{OH}-V_{OL})/2$ or $(V_{IH}-V_{IL})/2$ as applicable.

Figure 12. Terminal Serial STS-1 Input Timing

SDNS007B - OCTOBER 1993 - REVISED JUNE 1995

NO.			MIN	TYP	MAX	UNIT
1	^t c(RTCO)	Clock cycle time, RTCO		19.29		ns
2	^t w(RTCOH)	Pulse duration, RTCO high		9.65		ns
3	^t w(RTCOL)	Pulse duration, RTCO low		9.65		ns
4	^t w(RSYNH)	Pulse duration, RSYN high				ns
5	^t d(RTDO)	Delay time, RTCO↓ to RTDO valid				ns
5	^t d(RSPE)	Delay time, RTCO↓ to RSPE valid				ns
5	^t d(RSYN)	Delay time, RTCO↓ to RSYN valid				ns
6	^t d(RSPE)GAP	Delay time, gap from RSPE \downarrow to RSPE \downarrow				ns

operating characteristics, $C_L = 15 \text{ pF}$ (see Note 4 and Figure 13)

NOTE 4: Timing intervals are measured at $(V_{OH} - V_{OL})/2$ or $(V_{IH} - V_{IL})/2$ as applicable.

SDNS007B - OCTOBER 1993 - REVISED JUNE 1995

NO.			MIN	NOM	MAX	UNIT
1	^t c(TTCI)	Clock cycle time, TTCI		19.29		μs
2	^t w(TTCIH)	Pulse duration, TTCI high		9.65		ns
3	^t w(TTCIL)	Pulse duration, TTCI low		9.65		ns
4	^t w(TSYNH)	Pulse duration, TSYN high				ns
5	^t su(TTDI)	Setup time, TTDI valid before TTCI \uparrow				μs
5	^t su(TSPE)	Setup time, TSPE valid before TTCI \uparrow				ns
5	^t su(TSYN)	Setup time, TSYN valid before TTCI↑				ns
6	^t h(TTDI)	Hold time, TTDI valid after TTCI↑				ns
6	^t h(TSPE)	Hold time, TSPE valid after TTCI↑				μs
6	^t h(TSYN)	Hold time, TSYN valid after TTCI↑				ns
7	^t d(TSPE)GAP	Delay time, gap from <code>TSPE</code> to <code>TSPE</code>				ns

NOTE 4: Timing intervals are measured at $(V_{OH}-V_{OL})/2$ or $(V_{IH}-V_{IL})/2$ as applicable.

Figure 14. Terminal Serial SPE-Only Input Timing

SDNS007B - OCTOBER 1993 - REVISED JUNE 1995

operating characteristics, $C_L = 15 \text{ pF}$ (see Note 4 and Figure 15)

Figure 15. Receive-Terminal-Clock Output Timing

SDNS007B - OCTOBER 1993 - REVISED JUNE 1995

NO.			MIN	MAX	UNIT
1	^t w(ALEH)	Pulse duration, ALE high			ns
2	^t w(WRL)	Pulse duration, WR low			ns
3	^t su(AD)1	Setup time, AD7–AD0 valid before ALE \downarrow			ns
4	t _{su(AD)2}	Setup time, AD7–AD0 valid before $\overline{WR}\downarrow$			ns
5	^t h(AD)1	Hold time, AD7–AD0 valid after ALE \downarrow			ns
6	^t h(AD)2	Hold time, AD7–AD0 valid after \overline{WR}			ns
7	^t d(ALE)	Delay time, \overline{WR} to ALE \uparrow			ns
8	^t d(WR)1	Delay time, ALE \downarrow to $\overline{WR}\downarrow$			ns
9	^t d(WR)2	Delay time, $\overline{SEL}\downarrow$ to $\overline{WR}\downarrow$			ns
10	^t d(SEL)	Delay time, WR↑ to SEL↑			ns

timing requirements, C_L = 15 pF (see Note 4 and Figure 16)

[†] RDY goes low when the address being written to corresponds to a RAM location but remains high during status or control register access. NOTE 4: Timing intervals are measured at $(V_{OH} - V_{OL})/2$ or $(V_{IH} - V_{IL})/2$ as applicable.

operating characteristics, $C_L = 15 \text{ pF}$ (see Note 4 and Figure 16)

NO.		MIN	MAX	UNIT
11	tw(RDYL) Pulse duration, RDY low [†]			ns
12	t _d (RDY) Delay time, $\overline{WR}\downarrow$ to RDY \downarrow			ns

[†] RDY goes low when the address being written to corresponds to a RAM location but remains high during status or control register access. NOTE 4: Timing intervals are measured at $(V_{OH} - V_{OL})/2$ or $(V_{IH} - V_{IL})/2$ as applicable.

NOTE A: Open-drain rise time is dependent upon external pullup resistor and load capacitance.

Figure 16. Microprocessor Write-Cycle Timing

SDNS007B - OCTOBER 1993 - REVISED JUNE 1995

timing requirements, $C_L = 15 \text{ pF}$ (see Note 4 and Figure 17)

NO.			MIN	MAX	UNIT
1	^t w(ALEH)	Pulse duration, ALE high			μs
2	^t w(RDL)	Pulse duration, RD low			ns
3	^t su(AD)	Setup time, AD7–AD0 valid before ALE \downarrow			ns
4	^t h(AD)	Hold time, AD7–AD0 valid after $\overline{ALE}\downarrow$			ns
5	^t d(ALE)	Delay time, RD↑ to ALE↑			ns
6	^t d(RD)	Delay time, ALE \downarrow to $\overline{RD}\downarrow$			ns
7	^t d(AD)	Delay time, $\overline{RD}\downarrow$ to AD7–AD0 invalid			ns
8	^t d(AD)	Delay time, RD↑ to AD7–AD0			ns
9	^t d(RD)	Delay time, $\overline{SEL}\downarrow$ to $\overline{RD}\downarrow$			ns
10	^t d(SEL)	Delay time, RD↑ to SEL↑			ns

[†] RDY goes low when the address being written to corresponds to a RAM location but remains high during status or control-register access. NOTE 4: Timing intervals are measured at $(V_{OH} - V_{OL})/2$ or $(V_{IH} - V_{IL})/2$ as applicable.

operating characteristics, $C_L = 15 \text{ pF}$ (see Note 4 and Figure 17)

NO.			MIN	MAX	UNIT
11	^t w(RDYL)	Pulse duration, RDY low [†]			ns
12	^t d(RDY)	Delay time, AD7–AD0 to RDY↑			ns
13	^t d(RDY)	Delay time, $\overline{RD}\downarrow$ to $RDY\downarrow$			ns

NOTE A: Open-drain rise time is dependent upon external pullup resistor and load capacitance.

Figure 17. Microprocessor Read-Cycle Timing

SDNS007B - OCTOBER 1993 - REVISED JUNE 1995

operating characteristics, $C_L = 15 \text{ pF}$ (see Note 4 and Figure 18)

SDNS007B - OCTOBER 1993 - REVISED JUNE 1995

PRINCIPLES OF OPERATION

All address locations are given in hex (h). The relationship between a transmission byte (for example, C1) and TNETS3001 individual bit locations is shown below:

Individual-Bit Transmission Order (for transmission bytes)

TNETS3001 register-bit map

ADDRESS (hex)	MODET	BIT 7	BIT 6	BIT 5	BIT 4	BIT 3	BIT 2	BIT 1	BIT 0	COMMENT [‡]
0F0	R/W	RLOC	RNPTR	RPAIS	RLAIS	RLOP	RLOF	ROOF	RLOS	SR0
0F1	R/W	Sa	ame as 0F0 o	except does	not reset on	read; write o	ones to reset	individual b	its	SR0
0F2	R/W	INT	RTNEW	RPNEW	RPYE	RFERF	RAPS			SR1
0F3	R/W	Sa	ame as 0F2 o	except does	not reset on	read; write o	ones to reset	individual b	its	SR1
0F4	R			Same	as 0F0 exce	ot unlatched	values			SR0
0F5	R		Same as 0F2 except unlatched values					SR1		
0F8	R/W	RRSD	RRLD	RRE1	RRE2	RPATH	RRAPS	RRPTR	TRLOOP	CR0
0F9	R/W	RRF1	RRC1	RRZ1	RRZ2	RRAIS	LTE	RRFRM	RRB1	CR1
0FA	R/W	STS1	PARA	HINT	TRFERF	ALTOW	TIEN	PIEN	–VE	CR2
1F0	R/W	TLOC	TNPTR	TPAIS	TLAIS	TLOP	TLOF	TOOF	TLOS	SR2
1F1	R/W	Sa	ame as 1F0 o	except does	not reset on	read; write o	ones to reset	individual b	its	SR2
1F4	R			Same	as 1F0 exce	ot unlatched	values			SR2
1F8	R/W	TRSD	TRLD	TRE1	TRE2	TPATH	TRAPS	EXAPS	RTLOOP	CR3
1F9	R/W	TRF1	TRC1	TRZ1	TRZ2	TRAIS	PTE	RXRTM	RRB2	CR4
1FA	R/W	SPE	TCLK	RCLK	reserved	TXRTM	reserved	INC	DEC	CR5
1FB	R/W	TRFRM	TRERR	TAIS	unused	RE2A	RA2E	TE2E	TA2E	CR6

[†]Read/write (R/W); Read only (R)

[‡]SR = Status Register; CR = Control Register

SDNS007B - OCTOBER 1993 - REVISED JUNE 1995

PRINCIPLES OF OPERATION

register-bit map descriptions

control register 0

ADDRESS			DESCRIPT	ION		
(hex)	BIT	NAME	BIT EQUAL TO 1 (HIGH) BIT EQUAL TO 0 (LOW)		COMMENTS	
0F8	7	RRSD	Receiver terminal-side section-datacom bytes control. Outgoing terminal data has section-datacom bytes from the RAM (D1–D3).	Outgoing terminal data has section-datacom bytes from the receive line.	See Note 6	
0F8	6	RRLD	Receiver terminal-side line-datacom bytes control. Outgoing terminal data has line-datacom bytes from the RAM (D4–D12).	Outgoing terminal data has line- datacom bytes from the receive line.	See Note 6	
0F8	5	RRE1	Receiver terminal-side E1 byte control. Outgoing terminal data has section- orderwire byte from the RAM. RA2E must be low.	Outgoing terminal data has section-orderwire byte from the receive line.	See Note 6	
0F8	4	RRE2	Receiver terminal-side E2 byte control. Outgoing terminal data has line-orderwire byte from the RAM.	Outgoing terminal data has line- orderwire byte from the receive line.	See Note 6	
0F8	3	RPATH	Receiver terminal-side path-overhead control. Outgoing terminal data has path- overhead (except H4) bytes from the RAM.	Outgoing terminal data has path- overhead bytes from the receive line.	Multiframe-indicator byte (H4) always passes through	
0F8	2	RRAPS	Receiver terminal-side APS bytes control. Outgoing terminal data has APS bytes (K1 and K2) from the RAM.	Outgoing terminal data has APS bytes (K1 and K2) from the receive line.	See Note 6	
0F8	1	RRPTR	Receiver terminal-side pointer control. Dutgoing terminal data has pointer bytes H1 and H2) from the RAM. Outgoing terminal data has pointer bytes from the receive line recalculated.		See Notes 6 and 7. Only pointer value is introduced.	
0F8	0	TRLOOP	Transmit-receive loopback enable. Line output looped back to receive line input.	Normal operation	RFRI is disabled during loopback.	

NOTES: 6. The TOH bytes are inserted into the terminal data only in the pass-through mode. In the receive-retiming and SPE-only modes, all TOH bytes except A1, A2, E1, H1 and H2 are set to zero.

7. This mode does not modify the payload. It inserts H1 and H2 bytes from insert RAM locations and can be used for self test.

SDNS007B - OCTOBER 1993 - REVISED JUNE 1995

PRINCIPLES OF OPERATION

control register 1

ADDRESS			DESCRI	PTION	0.01/1/51/70	
(hex)	BIT	NAME	BIT EQUAL TO 1 (HIGH)	BIT EQUAL TO 0 (LOW)	COMMENTS	
0F9	7	RRF1	Receiver terminal-side F1 byte control. Outgoing terminal data has section-user byte (F1) from the RAM.	Outgoing terminal data has section- user byte from the receive line.	See Note 6	
0F9	6	RRC1	Receiver terminal-side C1 byte control. Outgoing terminal data has STS-1 ID byte (C1) from the RAM.	Outgoing terminal data has STS-1 ID byte (C1) from the receive line.	See Note 6	
0F9	5	RRZ1	Receiver terminal-side Z1 byte control Outgoing terminal data has growth-byte Z1 from the RAM.	Outgoing terminal data has growth-byte Z1 from the receive line.	See Note 6	
0F9	4	RRZ2	Receiver terminal-side Z2 byte control. Outgoing terminal data has growth-byte Z2 from the RAM.	Outgoing terminal data has growth- byte Z2 from the receive line.	See Note 6	
0F9	3	RRAIS	Receiver terminal-side AIS output control. Enables automatic insertion of AIS into outgoing terminal data	Disables automatic insertion of AIS into outgoing terminal data	See Note 8	
0F9	2	LTE	Line-terminating-equipment enable. Enables AIS transmission and introduction.	Disable line-terminating equipment for AIS transmission and introduction	Section-terminating equipment if LTE=0 and PTE = 0	
0F9	1	RRFRM	Receive terminal-side framing-byte control. Outgoing terminal data has framing bytes regenerated.			
0F9	0	RRB1	Receive terminal-side B1 parity-byte control. Outgoing terminal data has B1 byte recalculated.	Outgoing terminal data has B1 byte from the receive line.	See Note 6	

PRODUCT PREVIEW

NOTES: 6. The TOH bytes are inserted into the terminal data only in the pass-through mode. In the receive-retiming and SPE-only modes, all TOH bytes except A1, A2, E1, H1 and H2 are set to zero.

8. The SPE bytes are set to all ones during the SPE and RX retiming modes. All TOH bytes except A1, A2, E1, H1, and H2 are set to zero.

SDNS007B - OCTOBER 1993 - REVISED JUNE 1995

PRINCIPLES OF OPERATION

ADDRESS	DIT		DESCRI	PTION	0011151170
(hex)	BIT	NAME	BIT EQUAL TO 1 (HIGH) BIT EQUAL TO		COMMENTS
0FA	7	STS1	STS-1/STS-N mode control, line side in STS-1 mode. Received data is descrambled and transmit data is scrambled. Received B1 contains BIP-8 parity. Transmit B1 is recalculated.	Line-side in STS-N mode. Data is not scrambled. Received B1 byte contains BIP-8 errors. Transmit B1 byte contains error mask.	Controls both receive and transmit line side
0FA	6	PARA	Parallel/serial-mode control. Terminal-side interface is parallel. In receive direction, both serial and parallel interfaces are active.	Terminal-side interface is serial. In receive direction, both serial and parallel interfaces are active except in SPE-only mode.	
0FA	5	HINT	Hardware-interrupt enable. Enables hardware interrupt.	Disables hardware interrupt	
0FA	4	TRFERF	Transmit line-side FERF enable. Enables automatic introduction of line FERF into line-side output.	Disables automatic introduction to line FERF into line-side output	See Note 9
0FA	3	ALTOW	Orderwire-mode control. Selects alternate orderwire-interface frame coincident with data MSB.	Selects normal orderwire-interface frame ahead of data MSB by one bit	See Figures 3 and 4
0FA	2	TIEN	Transport-layer-interrupt enable. Enables transport-layer interrupt.	Disables transport-layer interrupt	See Note 10
0FA	1	PIEN	Path-layer-interrupt enable. Enables transport-layer interrupt.	Disables path-layer interrupt	See Note 11
0FA	0	VE	Interrupt-edge control. Interrupts on both positive and negative edges of alarm.	Interrupts only on positive-going edge of alarms	

control register 2

NOTES: 9. The conditions for FERF transmission are receive loss of signal, receive loss of frame, and/or receive line AIS.

 The conditions for transport-layer interrupt are transport-layer alarms (RLOS, ROOF, RLOF, RLAIS, RFERF, RPAIS, and RLOP), overflow of transport-layer performance monitors (receive B1 counter, receive B2 counter, transmit B1 counter, and transmit B2 counter), and new debounced values of C1, F1, K1, K2, Z1, and Z2 receive-path-overhead bytes.

11. The conditions for path-layer interrupt are path yellow alarm, overflow of path-layer performance monitors (receive B3 counter, receive FEBE counter, and transmit B3 counter), and new debounced values of C2, F2, Z3, Z4, and Z5 receive-path overhead bytes.

SDNS007B - OCTOBER 1993 - REVISED JUNE 1995

PRINCIPLES OF OPERATION

control register 3

ADDRESS	віт		DESCRIPT	ON	
(hex)	BIT NAME		BIT EQUAL TO 1 (HIGH) BIT EQUAL		COMMENTS
1F8	7	TRSD	Transmit line-side section-datacom-bytes control. Outgoing line data has section-datacom bytes from the section-datacom interface $(D1-D3)$.	Outgoing line data has section- datacom bytes from the terminal.	See Notes 12, 13, and 15
1F8	6	TRLD	Transmit line-side line-datacom-bytes control. Outgoing line data has line- datacom bytes from the line-datacom interface (D4–D12).	Outgoing line data has line- datacom bytes from the terminal.	See Notes 12, 13, and 15
1F8	5	TRE1	Transmit line-side line E1 byte control. Outgoing line data has section-orderwire byte from the orderwire interface.	Outgoing line data has section- orderwire byte from the terminal.	See Notes 12, 13, and 15
1F8	4	TRE2	Transmit line-side E2 byte control. Outgoing line data has line-orderwire byte from the orderwire interface.	Outgoing line data has line- orderwire byte from the terminal.	See Notes 12, 13, and 15
1F8	3	TPATH	Transmit line-side E2 byte control. Outgoing line data has path-overhead (except H4) bytes from the RAM.	Outgoing line data has path- overhead bytes from the terminal.	Multiframe-indicator byte (H4) always passes through.
1F8	2	TRAPS	Transmit line-side APS control. Outgoing line data has APS bytes from the RAM.	Outgoing line data has APS bytes from the terminal.	See Notes 13, 14, and 15
1F8	1	TRAPS	External APS-to-RAM enable. APS bytes from the orderwire interface loaded to the RAM every frame.	RAM location for APS bytes not modified	See Notes 13, 14, and 15
1F8	0	RTLOOP	Receive-to-transmit loopback enable. Receive terminal output looped back to transmit terminal input.	Normal operation	

PRODUCT PREVIEW

NOTES: 12. Orderwire or datacom channels can come either from the terminal or the respective serial interface.

13. These channels cannot come from the terminal in the SPE-only mode.

14. Transmit line APS bytes have three sources: terminal, orderwire interface, or RAM (using microprocessor interface).

15. These features are not available in the SPE-only mode.

SDNS007B - OCTOBER 1993 - REVISED JUNE 1995

PRINCIPLES OF OPERATION

ADDRESS			DESCRIPT	ION	0011151150
(hex)	BIT	NAME	BIT EQUAL TO 1 (HIGH)	BIT EQUAL TO 0 (LOW)	COMMENTS
1F9	7	TRF1	Transmit line-side F1 byte control. Outgoing line data has section-user byte (F1) from the RAM.	Outgoing line data has section- user byte from the terminal.	See Note 16
1F9	6	TRC1	Transmit line-side C1 byte control. Outgoing line data has STS-1 ID byte (C1) from the RAM.	Outgoing line data has STS-1 ID byte (C1) from the terminal.	See Note 16
1F9	5	TRZ1	Transmit line-side Z1 byte control. Outgoing line data has growth-byte Z1 from the RAM.	Outgoing line data has growth- byte Z1 from the terminal.	See Note 16
1F9	4	TRZ2	Transmit line-side Z2 byte control. Outgoing line data has growth-byte Z2 from the RAM.	Outgoing line data has growth- byte Z2 from the terminal.	See Note 16
1F9	3	TRAIS	Transmit line-side AIS enable. Enables automatic insertion of AIS into outgoing line data.	Disables automatic insertion of AIS into outgoing line data	
1F9	2	PTE	Transmit line-side AIS enable. Enables automatic insertion of AIS into outgoing line data.	Disable path-terminating equipment for AIS transmission and introduction	Section-terminating equipment if LTE=0 and PTE = 0
1F9	1	RXRTM	Receive retiming mode control. Disables receive-retiming and SPE-only modes.	Enables receive-retiming and SPE-only modes	See interfaces and operating modes section of this data sheet
1F9	0	RRB2	Receive terminal-side B2 byte control. Outgoing terminal data has B2 byte recalculated.	Outgoing terminal data has B2 byte from the receive line.	See Note 17

control register 4

NOTES: 16. These bytes cannot come from the terminal in the SPE-only mode.

17. These features are not available in the receive-retiming and SPE-only modes.

PRODUCT PREVIEW

SDNS007B - OCTOBER 1993 - REVISED JUNE 1995

PRINCIPLES OF OPERATION

control register 5

ADDRESS			DESCRIPT	ION	0.0111/51/20
(hex)	BIT	NAME	BIT EQUAL TO 1 (HIGH)	BIT EQUAL TO 0 (LOW)	COMMENTS
1FA	7	SPE	SPE-only/STS-1 mode control. SPE-only mode in the terminal side RXRTM bit must be low.	STS-1 mode in the terminal side	
1FA	6	TCLK	Transmitter clock-source select. TLCO derived from TLCI.	TLCO is derived from TTCI in serial mode or TPCI in parallel mode.	
1FA	5	RCLK	Receiver clock-source select. <u>RTCO and</u> TPCO are derived from TLCI. <u>RXRTM</u> bit must be low.	RTCO and TPCO are derived from RLCI.	
1FA	4		Not defined	Normal operation	This bit must be set low.
1FA	3	TXRTM	Transmit-retiming-mode control. Enables automatic pointer justifications by transmit-retiming circuitry.	Disables automatic-pointer justifications by transmit-retiming circuitry	See Note 18
1FA	2		Not defined	Normal operation	This bit must be set low.
1FA	1	INC	Increment-pointer control. Forces pointer increments in line side.	Normal operation	These bits must be reset two frames after being set to
1FA	0	DEC	Decrement-pointer control. Forces pointer decrements in line side.	Normal operation	prevent multiple pointer justifications (see Note 18).

NOTE 18: These bits must be used with caution or an error in transmission can result.

SDNS007B - OCTOBER 1993 - REVISED JUNE 1995

PRINCIPLES OF OPERATION

ADDRESS			DESCRIPT	ION	0.011151/50
(hex)	BIT	NAME	BIT EQUAL TO 1 (HIGH) BIT EQUAL TO 0 (LOW)		COMMENTS
1FB	7	TRFRM	Transmit line-side framing control. Enables automatic generation of the transmit-framing bytes (A1 and A2).	Disables automatic generation of the transmit-framing bytes (A1 and A2)	See Note 18
1FB	6	TRERR	Transmit line-side parity-error-mask control. Enables automatic reset of transmit line B1, B2 and B3 error masks after one transmission.	Disables automatic reset of transmit line B1, B2 and B3 error masks after one transmission	See Note 18
1FB	5	TAIS	Transmit line-side AIS control. Introduces AIS into transmit line.	Normal operation	LTE and PTE bits determine line AIS or path AIS.
1FB	4	Unused			
1FB	3	RE2A	Receiver E1-to-AIS mode control. Enables received line E1 byte to be interpreted as AIS-transmission byte.	Disables received line E1 byte to be interpreted as AIS-transmission byte	
1FB	2	RA2E	Receiver E1-to-AIS mode control. Enables received line E1 byte to be interpreted as AIS-transmission byte.	Disables AIS transmission using receive terminal E1 byte	
1FB	1	TE2A	Transmitter E1-to-AIS mode control. Enables transmit terminal E1 byte to be interpreted as AIS-transmission byte.	Disables transmit terminal E1 byte to be interpreted as AIS- transmission byte	
1FB	0	TA2E	Transmitter AIS-to-E1 mode control. Enables AIS transmission using transmit line E1 byte.	Disables AIS transmission using transmit line E1 byte	

control register 6

NOTE 18: These bits must be used with caution or an error in transmission can result.

SDNS007B - OCTOBER 1993 - REVISED JUNE 1995

PRINCIPLES OF OPERATION

ADDRESS				CONDITIC	DNS	
(hex)	BIT	SYMBOL	NAME	ENTER	EXIT	
0F0, 0F1, 0F4	7	RLOC	Receive loss of clock	200 ns of no transitions in receive-line clock RLCI	Any transition of the receive-line clock RLCI	
0F0, 0F1	6	RNPTR	Receive new pointer	A new-pointer value due to new-data flag or three consecutive frames of different pointer values	Microprocessor read from address 0F0 or writing 1 to bit 6 of address 0F2	
0F0, 0F1, 0F4	5	RPAIS	Receive path AIS	Three consecutive frames of all ones in H1 and H2 bytes	NDF with valid pointer or three successive frames with valid pointer	
0F0, 0F1, 0F4	4	RLAIS	Receive line AIS	Five consecutive frames of 111 in the bits 2,1,0 (6,7,8 transmission-bit standard) of the K2 byte	Five consecutive frames of patterns other than 111 in the bits 2,1,0 (6,7,8 transmission-bit standard) of the K2 byte	
0F0, 0F1, 0F4	3	RLOP	Receive loss of pointer	Eight consecutive frames of invalid pointer or NDF	Three consecutive frames of valid pointer	
0F0, 0F1, 0F4	2	RLOF	Receive loss of frame	Eight consecutive frames of out-of-frame condition	Eight consecutive frames of in-frame condition	
0F0, 0F1, 0F4	1	ROOF	Receive out of frame	Failure to acquire valid framing pattern for four consecutive frames	Valid framing pattern exactly 6480 bits apart	
0F0, 0F1, 0F4	0	RLOS	Receive loss of signal	STS-1 mode. 20 µs of all zeros in the scrambled data RLDI or RXLOS low. STS-N mode. 6480 bits of all zeros or all ones or RXLOS low.	STS-1 mode. A valid framing pattern in the scrambled data and RXLOS high. STS-N mode. Any transition in RLDI and RXLOS high.	

status register 0 (see Notes 19, 20, and 21)

PRODUCT PREVIEW

NOTES: 19. The address 0F0 contains latched values of these status bits, which reset on read.

20. The address 0F1 contains latched values of these status bits, but do not reset on read. Write one to an individual bit to reset. Write back read value to reset the entire register.

21. The address 0F4 contains unlatched values of these status bits. The information is transient.

SDNS007B - OCTOBER 1993 - REVISED JUNE 1995

PRINCIPLES OF OPERATION

ADDRESS	DIT	0/4000		CONDITIO	DNS	
(hex)	BIT	SYMBOL	NAME	ENTER	EXIT	
0F2, 0F3	7	INT	Interrupt	Rising-edge/both-edges alarms, new debounced-overhead bytes or performance-monitor overflow	Microprocessor read from address 0F2 or writing one to bit 7 of address 0F3	
0F2, 0F3	6	RTNEW	Receive new debounced-transport- overhead byte	Any new debounced value for the following TOH bytes: C1, F1, K1, K2, Z1, and Z2	Microprocessor read from address 0F2 or writing one to bit 6 of address 0F3	
0F2, 0F3	5	RPNEW	Receive new debounced-path- overhead byte	Any new debounced value for the following POH bytes: C2, F2, Z3, Z4, and Z5	Microprocessor read from address 0F2 or writing one to bit 5 of address 0F3	
0F2, 0F3, 0F5	4	RPYE	Receive path yellow	Ten consecutive frames of 1 in bit 3 (bit 5 transmission-bit standard) of the G1 byte	Ten consecutive frames of zero in the bit 3 (bit 5 transmission-bit standard) of the G1 byte	
0F2, 0F3, 0F5	3	RFERF	Receive FERF	Five consecutive frames of 110 in the bits 2, 1, 0 (bits 6, 7, 8 transmission-bit standard) of the K2 byte	Five consecutive frames of 000 or 111 in the bits 2,1,0 (bits 6,7,8 transmission-bit standard) of the K2 byte	
0F2, 0F3, 0F5	2	RAPS	Receive APS bytes failure	Twelve successive frames with no three consecutive frames containing identical APS bytes	Three consecutive frames containing identical APS bytes	
0F2, 0F3, 0F5	1	unused				
0F2, 0F3, 0F5	0	unused				

status register 1 (see Notes 22, 23, and 24)

NOTES: 22. The address 0F2 contains latched values of these status bits, which reset on read.

23. The address 0F3 contains latched values of these status bits, but do not reset on read. Write one to individual bit to reset. Write back read value to reset the entire register.

24. The address 0F5 contains unlatched values of these status bits.

SDNS007B - OCTOBER 1993 - REVISED JUNE 1995

PRINCIPLES OF OPERATION

ADDRESS	DIT			CONDITIC	DNS
(hex)	BIT	SYMBOL	NAME	ENTER	EXIT
1F0, 1F1, 1F4	7	TLOC	Transmit loss of clock	200 ns of no transitions in the clock TTCI	Any transition of the clock TTCI
1F0, 1F1, 1F4	6	TNPTR	Transmit new pointer	A new-pointer value due to new-data flag or three consecutive frames of different pointer values	
1F0, 1F1, 1F4	5	TPAIS	Transmit path AIS	Three consecutive frames of all ones in H1 and H2 bytes	NDF with valid pointer or three successive frames with valid pointer
1F0, 1F1, 1F4	4	TLAIS	Transmit line AIS	Five consecutive frames of 111 in bits 6, 7, 8 of the K2 byte	Five consecutive frames of patterns other than 111 in bits 6, 7, 8 of the K2 byte
1F0, 1F1, 1F4	3	TLOP	Transmit loss of pointer	Eight consecutive frames of invalid pointer or NDF	Three consecutive frames of valid pointer
1F0, 1F1, 1F4	2	TLOF	Transmit loss of frame	Eight consecutive frames of out-of-frame condition	Eight consecutive frames of not out-of-frame condition
1F0, 1F1, 1F4	1	TOOF	Transmit out of frame	Failure to acquire valid framing pattern for four consecutive frames	Valid framing pattern exactly 6480 bits apart
1F0, 1F1, 1F4	0	TLOS	Transmit loss of signal	6480 bits of all zeros or all ones	Any transition in TTDI

status register 2 (see Notes 25, 26, 27, and 28)

NOTES: 25. The address 1F0 contains latched values of these status bits, which reset on read.

26. The address 1F1 contains latched values of these status bits, but do not reset on read. Write one to an individual bit to reset. Write back read value to reset the entire register.

27. The address 1F4 contains unlatched values of these status bits.

28. None of these alarms, except TLOS, work in the SPE-only mode.

PRODUCT PREVIEW

SDNS007B - OCTOBER 1993 - REVISED JUNE 1995

PRINCIPLES OF OPERATION

memory map

receive line-overhead byte locations (in hex)

receive insert-overhead byte locations (in hex)

[†] These bytes are optionally regenerated by the TNETS3001.

SDNS007B - OCTOBER 1993 - REVISED JUNE 1995

PRINCIPLES OF OPERATION

receive line- and terminal-overhead byte RAM locations

0/410.01	ADDRE	SS (hex)	CONTROL	DECODIDEION
SYMBOL	INCOMING	INSERT [†]	віт†	DESCRIPTION
A1	016	036	RRFRM	Framing pattern. The A1 and A2 bytes are automatically regenerated and are
A2	017	037		stored in insert locations.
C1	01C 05C	03C	RRC1	STS-1 signal identifier. The incoming C1 byte is debounced and stored in location 05C.
B1	014	034 049	RRB1	Section BIP-8 parity. The received B1 byte carries B1 BIP-8 parity in the STS-1 mode and B1 BIP-8 parity-error indications in the STS-N mode. The parity errors are added to the receive B1 counter. The B1 BIP-8 parity for the outgoing terminal data is recalculated and stored in the insert location.
E1	018	038	RRE1 RE2A [‡] RA2E [‡]	Section-orderwire byte. The incoming E1 byte is also available in the orderwire/APS interface. The E1 byte can be reused for AIS communication between multiple TNETS3001s.
F1	01D 05D	03D	RRF1	Section-user byte. The F1 byte is debounced and stored in location 05D.
D1 D2 D3	005 006 007	025 026 027	RRSD	Section data-communication channel. The incoming D1, D2, and D3 bytes are available as a single 192-kbit/s serial HDLC channel on the section-datacom interface.
H1 H2 H3	011 012 013	031 032 033	RRPTR	Payload-pointer and pointer-action bytes. The insert H1, H2, and H3 bytes are inserted into the outgoing terminal data without changing the J1-byte position.
B2	015	035 051	RRB2	Line BIP-8 bit parity. The received B2 byte carries the B2 BIP-8 parity. The parity errors are added to the B2 counter. The recalculated B2 byte is stored in the insert address.
K1 K2	01E, 05E 01F, 05F	03E 03F	RRAPS	Automatic-protection-switching bytes. The K1 and K2 bytes are debounced and stored in locations 05E and 05F, respectively. The APS bytes are also available in the orderwire/APS interface.
D4-D12	008-010	028-030	RRLD	Line data-communication channel. The incoming D4 through D12 bytes are available as a single 576-kbit/s serial HDLC channel on the line-datacom interface.
E2	019	039	RRE2	Line-orderwire byte. The incoming E2 byte is also available in the orderwire/ APS interface.
Z1 Z2	01A, 05A 01B, 05B	03A 03B	RRZ1 RRZ2	Growth bytes. The Z1 and Z2 bytes are debounced and stored in locations 05A and 05B, respectively.

[†] The insert bytes are multiplexed into the terminal data when the corresponding control bit is set. Otherwise, the incoming bytes are multiplexed into the terminal data. If used, the microprocessor should initialize the insert locations. This feature is available in pass-through mode only. In receive-retiming or SPE-only modes, the terminal data has these bytes as an all-zeros pattern.

[‡] The E1 byte can be used for AIS transmission. All ones in the E1 byte indicates an AIS condition; all zeros indicates a non-AIS condition. If the control bit RE2A is set, the TNETS3001 interprets the incoming E1 byte for AIS information. When the control bit RA2E is set, the terminal E1 byte carries AIS information.

SDNS007B - OCTOBER 1993 - REVISED JUNE 1995

PRINCIPLES OF OPERATION

receive path-overhead byte RAM locations

CYMDOL	ADDRES	SS (hex)	CONTROL	DESCRIPTION
SYMBOL	INCOMING	INSERT [†]	віт†	DESCRIPTION
J1	080-0BF	080-0BF		Path trace. The incoming message is stored in the RAM locations in a rotating fashion. There is no specified starting point, but any incoming J1 byte is written into the next sequential RAM location. The J1 byte always passes through the TNETS3001 without modification.
В3	0C0	0C8	RPATH	Path BIP-8 parity. The received B3 byte carries the B3 BIP8 parity. The parity errors are added to the B3 counter. The recalculated B3 byte is stored in the insert address.
C2	0C1, 0D1	0C9	RPATH	Path-signal label. The C2 byte is debounced and stored in location 0D1.
G1	0C2	0CA	RPATH	Path status. The upper nibble of the G1 byte contains the FEBE count (up to eight per frame) and is added to the receive FEBE counter.
F2	0C3, 0D3	0CB	RPATH	Path-user channel. This byte provides user information between path- terminating network elements. The F2 byte is debounced and stored in location 0D3.
H4	0C4	0CC		Multiframe indicator. The H4 byte always passes through the TNETS3001 without modification.
Z3 Z4 Z5	0C5, 0D5 0C6, 0D6 0C7, 0D7	0CD 0CE 0CF	RPATH	Path growth. The Z3, Z4, and Z5 bytes are debounced and stored in locations 0D5, 0D6, and 0D7, respectively.

[†] The insert bytes are multiplexed into the terminal data stream when the corresponding control bit is set. Otherwise, the incoming bytes are multiplexed into the terminal data.

receive performance-monitor locations[‡]

SYMBOL	ADDRESS (hex)	BITS	DISABLE CONDITIONS	DESCRIPTION				
B1	046	7-0	RLOS, RLOF	STS-1 mode. Counts B1 BIP-8 parity errors. STS-N mode Counts ones in the B1 byte.				
B2	047	7-0	RLOS, RLOF, RLAIS	Counts incoming B2 BIP-8 parity errors				
INC	045	7-4		Counts incoming pointer increments				
DEC	045	3-0	RLOS, RLOF, RLAIS,	Counts incoming pointer decrements				
B3			RLOP, RPAIS	Counts incoming B3 BIP-8 parity errors				
FEBE	0D2	7-0		Counts incoming FEBE nibbles				

[‡] All performance monitors saturate at the maximum value and reset to zero on read.

SDNS007B - OCTOBER 1993 - REVISED JUNE 1995

transmit insert-overhead byte locations (in hex)

	A1 [†]	A2 [†]	C1	J1
. [136	137	13C	180-1BF
-	в1 [‡]	E1 [§]	F1	B3
Ē	134	138	13D	1C8
Γ	D1 Serial I/O	D2 Serial I/O	D3 Serial I/O	C2
_ [125	126	127	1C9
	H1	H2	H3	G1
	(not available)	(not available)	133	1CA
	в2‡	K1§¶	K2 §¶	F2
ſ	135	13E	13F	1CB
	D4§	D53	D6 §	H4
-	128	129	12A	(not available)
	D7 Serial I/O	D8 Serial I/O	D9§	Z3
-	12B	12C	12D	1CD
	D10§	D11§	D12 §	Z4
-	12E	12F	130	1CE
	Z1	Z2	E2§	Z5
F	13A	13B	139	1CF

[†] These bytes are optionally regenerated by the TNETS3001.

[‡] These bytes are recalculated by the TNETS3001. They are XORed with respective error mask before transmission.

§ These bytes are inserted from the orderwire, APS, and datacom interfaces.

 \P The APS bytes are inserted from the APS or the microprocessor interface.

transmit terminal-overhead byte RAM locations (in hex)

A1	A2	C1	J1
116	117	11C	180-1BF
B1	E1	F1	B3
114	118	11D	1C0
D1	D2	D3	C2
105	106	107	1C1
H1	H2	H3	G1
111	112	113	1C2
B2	K1	К2	F2
115	11E	11F	1C3
D4	D5	D6	H4
108	109	10A	1C4
D7	D8	D9	Z3
10B	10C	10D	1C5
D10	D11	D12	Z4
10E	10F	110	1C6
Z1	Z2	E2	Z5
11A	11B	119	1C7

SDNS007B - OCTOBER 1993 - REVISED JUNE 1995

PRINCIPLES OF OPERATION

transmit terminal- and line-overhead byte RAM locations

	ADDRES	S (hex)	CONTROL	
SYMBOL	INCOMING	INSERT [†]	віт†	DESCRIPTION
A1	116	136		Framing pattern. The outgoing A1 and A2 bytes are stored in insert locations and automatically inserted into the outgoing line data. The A1 and A2 bytes are
A2	117	137		regenerated every frame when the control bit TRFRM = 1.
C1	11C	13C	TRC1	STS-1 signal identifier. Normal operation.
B1	114	134 149	TRERR¶	Section BIP-8 parity/error mask. B1 errors are added to the transmit B1 counter. The outgoing B1 BIP-8 parity is recalculated and stored in insert location 134. In the STS-1 mode, the recalculated B1 is XORed with the B1 error mask from location 149 before transmission. In the STS-N mode, the B1 error mask from location 149 is transmitted.
E1	118	138	TRE1 TE2A§ TA2E§	Section-orderwire byte. The E2 byte from the orderwire interface is stored in the insert location. The E1 byte is optionally reused for AIS communication between TNETS3001s.
F1	11D	13D	TRF1	Section-user byte. Normal operation.
D1 D2 D3	105 106 107	125 126 127	TRSD	Section data-communication channel. The section-datacom bytes, $D1 - D3$, from the section-datacom interface are stored in the insert location.
H1 H2 H3	111 112 113	133		Payload-pointer and pointer-action bytes. The TNETS3001 automatically recalculates the outgoing pointer. The H3 byte is inserted from RAM location 133.
B2	115	135 151	TRERR¶	Line BIP-8 bit parity. The B2 errors are added to the transmit B2 counter. The outgoing B2 BIP-8 parity is recalculated and stored in the insert location 135. The recalculated B2 is XORed with the B2 error mask from location 151 before transmission.
K1 K2	11E 11F	13E 13F	TRAPS EXAPS	Automatic-protection-switching bytes. If EXAPS is set, the APS bytes from the orderwire interface are stored in the insert RAM locations.
D4-D12	108-110	128–130	TRLD	Line data-communication channel. The line-datacom bytes, D4–D12, from the section-datacom interface are stored in the insert location.
E2	119	139	TRE2	Line-orderwire byte. The E2 byte from the orderwire interface is stored in the insert location.
Z1 Z2	11A 11B	13A 13B	TRZ1 TRZ2	Growth bytes. Normal operation.

[†] The insert bytes are multiplexed into the line data when the corresponding control bit is set. If used, the microprocessor initializes the insert locations.

[‡] In SPE-only modes, the incoming terminal data has these bytes as an all-zeros pattern.

S The E1 byte can be used for AIS transmission. All ones in the E1 byte indicates an AIS condition; all zeros indicates a non-AIS condition. If the control bit TE2A is set, the TNETS3001 interprets the incoming E1 byte for AIS information. When the control bit TA2E is set, the line E1 byte carries AIS information.

¶ If TRERR is set, the error masks are reset after transmission; otherwise, error is transmitted continuously.

SDNS007B - OCTOBER 1993 - REVISED JUNE 1995

PRINCIPLES OF OPERATION

transmit path-overhead byte RAM locations

	ADDRES	SS (hex)	CONTROL	DESCRIPTION
SYMBOL	INCOMING	INSERT [†]	віт†	DESCRIPTION
J1	180-1BF	180-1BF	TPATH	Path trace. The incoming/outgoing message is stored into/extracted from the RAM locations in a rotating fashion. There is no specified starting point, but any incoming J1 byte is written to/read from the next sequential RAM location.
В3	1C0	1C8	TPATH TRERR [‡]	Path BIP-8 parity. The parity errors are added to the B3 counter. The recalculated B3 byte is stored in the insert address. The recalculated B3 is XORed with the B3 error mask from location 1D0 before transmission.
C2	1C1	1C9	TPATH	Path-signal label. Normal operation.
G1	1C2	1CA	ТРАТН	Path status. If TPATH is set, the TNETS3001 sends a FEBE indication in the upper nibble of the outgoing G1 byte automatically. A path-yellow indication can be sent by setting bit 3 to one. The path-yellow indication should be sent 2-3 seconds after the following receive alarms are active: RLOS, RLOF, RLAIS, RLOP and RPAIS; and it should be removed 10–20 seconds after the receive alarms are cleared.
F2	1C3	1CB	TPATH	Path-user channel. Normal operation.
H4	1C4	1CC		Multiframe indicator. The H4 byte always passes through the TNETS3001 without modification.
Z3 Z4 Z5	1C5 1C6 1C7	1CD 1CE 1CF	TPATH	Path growth. Normal operation.

[†] The insert bytes are multiplexed into the line data stream when the corresponding control bit is set. Otherwise, the incoming bytes are multiplexed into the line data stream.

[‡] If TRERR is set, the error masks are reset after transmission; otherwise, error is transmitted continuously.

transmit performance-monitor locations§

SYMBOL	ADDRESS (hex)	BITS	DISABLE CONDITIONS	DESCRIPTION				
B1	146	7-0	TLOS, TLOF	Counts B1 BIP-8 parity errors				
B2	147	7-0	TLOS, TLOF, TLAIS	Counts incoming B2 BIP-8 parity errors				
INC	145	7–4		Counts incoming pointer increments				
DEC	145	3–0 TLOS, TLOF, TLAIS		Counts incoming pointer decrements				
B3	1D4	7-0		Counts incoming B3 BIP-8 parity errors				

[†] The insert bytes are multiplexed into the line data stream when the corresponding control bit is set. Otherwise, the incoming bytes are multiplexed into the line data stream.

§ All performance monitors saturate at the maximum value and reset to zero on read.

receive transport-overhead RAM contents summary[†]

ADDRESS	0	1	2	3	4	5	6	7	8	9	A	_В	C	D	E	F
00_	Spare	Spare	Spare	Spare	Spare	In D1	ln D2	In D3	In D4	ln D5	In D6	In D7	In D8	In D9	In D10	In D11
01_	ln D12	In H1	In H2	In H3	In B1	In B2	In A1	In A2	In D4	ln E2	In Z1	In Z2	In C1	In F1	In K1	ln K2
02_	Spare	Spare	Spare	Spare	Spare	Out D1	Out D2	Out D3	Out D4	Out D5	Out D6	Out D7	Out D8	Out D9	Out D10	Out D11
03_	Out D12	Spare	Spare	Spare	Out B1	Out B2	Out A1	Out A2	Out E1	Out E2	Out Z1	Out Z2	Out C1	Out F1	Out K1	Out K2
04_	Spare	Spare	Spare	Spare	Spare	PJC counter	B1 counter	B2 counter	Spare	B1 mask	F[-1] Z1	F[-1] Z2	F[-1] C1	F[-1] F1	F[-1] K1	F[-1] K2
05_	Spare	B2 mask	F[-2] Z1	F[-2] Z2	F[-2] C1	F[-2] F1	F[-2] K1	F[-2] K2	Spare	Spare	Deb Z1	Deb Z2	Deb C1	Deb F1	Deb K1	Deb K2

receive path-overhead RAM contents summary[†]

ADDRESS	0	1	2	3	4	5	6	_7	8	9	A	В	С	D	E	F
08_	F[-8]	F[-7]	F[-6]	F[-5]	F[-4]	F[-3]	F[-2]	F[-1]	In	F[-63]	F[-62]	F[-61]	F[-60]	F[-59]	F[-58]	F[-57]
	In J1	In J1	In J1	In J1	In J1	In J1	In J1	In J1	J1	In J1	In J1	In J1	In J1	In J1	In J1	In J1
09_	F[-56]	F[-55]	F[-54]	F[-53]	F[-52]	F[-51]	F[-50]	F[-49]	F[-48]	F[-47]	F[-46]	F[-45]	F[-44]	F[-43]	F[-42]	F[-41]
	In J1	In J1	In J1	In J1	In J1	In J1	In J1	In J1	In J1	In J1	In J1	In J1	In J1	In J1	In J1	In J1
0A_	F[-40]	F[-39]	F[-38]	F[-37]	F[-36]	F[-35]	F[-34]	F[-33]	F[-32]	F[-31]	F[-30]	F[-29]	F[-28]	F[-27]	F[-26]	F[-25]
	In J1	In J1	In J1	In J1	In J1	In J1	In J1	In J1	In J1	In J1	In J1	In J1	In J1	In J1	In J1	In J1
0B_	F[-24]	F[-23]	F[-22]	F[-21]	F[-20]	F[-19]	F[-18]	F[-17]	F[-16]	F[-15]	F[-14]	F[-13]	F[-12]	F[-11]	F[-10]	F[-9]
	In J1	In J1	In J1	In J1	In J1	In J1	In J1	In J1	In J1	In J1	In J1	In J1	In J1	In J1	In J1	In J1
0C_	In B3	In C2	In G1	In F2	In H4	In Z3	In Z4	ln Z5	Out B3	Out C2	Out G1	Out F2	Spare	Out Z3	Out Z4	Out Z5
0D_	B3 mask	Deb C2	FEBE counter	Deb F2	B3 counter	Deb Z3	Deb Z4	Deb Z5	Spare	F[-1] C2	Spare	F[-1] F2	Spare	F[-1] Z3	F[-1] Z4	F[-1] Z5
0E_	Spare	F[-2] C2	Spare	F[-2] F2	Spare	F[-2] Z3	F[-2] Z4	F[-2] Z5								

† In: Incoming-overhead byte

Out: Insert-overhead byte

F[-n]: Overhead byte from previous nth frame

Deb: Debounced-overhead byte

PRINCIPLES OF OPERATION

INETS3001

PRODUCT PREVIEW

POST OFFICE BOX 655303* DALLAS, TEXAS 75265

PRODUCT PREVIEW

transmit transport-overhead RAM contents summary[†]

													-			
ADDRESS	0	1	2	3	4	5	6	7	8	9	A	_В	_c	D	E	F
10_	Spare	Spare	Spare	Spare	Spare	In D1	In D2	In D3	In D4	ln D5	In D6	In D7	In D8	In D9	In D10	In D11
11_	In D12	In H1	In H2	In H3	In B1	In B2	In A1	In A2	In E1	ln E2	In Z1	In Z2	In C1	In F1	ln K1	In K2
12_	Spare	Spare	Spare	Spare	Spare	SDCC D1	SDCC D2	SDCC D3	LDCC D4	LDCC D5	LDCC D6	LDCC D7	LDCC D8	LDCC D9	LDCC D10	LDCC D11
13_	LDCC D12	Spare	Spare	Spare	Out B1	Out B2	Out A1	Out A2	Order W E1	OrderW E2	Out Z1	Out Z2	Out C1	Out F1	APS K1	APS K2
14_	Spare	Spare	Spare	Spare	Spare	PJC counter	B1 counter	B2 counter	Spare	B1 mask	Spare	Spare	Spare	Spare	Spare	Internal use
15_	Internal use	B2 mask	Spare	Spare	Spare	Spare	Spare	Spare								

transmit path-overhead RAM contents summary[†]

ADDRESS	0	_1	2	3	4	5	6	7	8	9	A	_В	_c	D	E	F
18_	F[-8]	F[-7]	F[-6]	F[-5]	F[-4]	F[-3]	F[-2]	F[-1]	Out	F[-63]	F[-62]	F[-61]	F[-60]	F[-59]	F[-58]	F[-57]
	Out J1	Out J1	Out J1	Out J1	Out J1	Out J1	Out J1	Out J1	J1	Out J1	Out J1	Out J1	Out J1	Out J1	Out J1	Out J1
19_	F[-56]	F[-55]	F[-54]	F[-53]	F[-52]	F[-51]	F[-50]	F[-49]	F[-48]	F[-47]	F[-46]	F[-45]	F[-44]	F[-43]	F[-42]	F[-41]
	Out J1	Out J1	Out J1	Out J1	Out J1	Out J1	Out J1	Out J1	Out J1	Out J1	Out J1	Out J1	Out J1	Out J1	Out J1	Out J1
1A_	F[-40]	F[-39]	F[-38]	F[-37]	F[-36]	F[-35]	F[-34]	F[-33]	F[-32]	F[-31]	F[-30]	F[-29]	F[-28]	F[-27]	F[-26]	F[-25]
	Out J1	Out J1	Out J1	Out J1	Out J1	Out J1	Out J1	Out J1	Out J1	Out J1	Out J1	Out J1	Out J1	Out J1	Out J1	Out J1
1B_	F[-24]	F[-23]	F[-22]	F[-21]	F[-20]	F[-19]	F[-18]	F[-17]	F[-16]	F[-15]	F[-14]	F[-13]	F[-12]	F[-11]	F[-10]	F[-9]
	Out J1	Out J1	Out J1	Out J1	Out J1	Out J1	Out J1	Out J1	Out J1	Out J1	Out J1	Out J1	Out J1	Out J1	Out J1	Out J1
1C_	In B3	In C2	In G1	In F2	In H4	In Z3	In Z4	In Z5	Out B3	Out C2	Out G1	Out F2	Spare	Out Z3	Out Z4	Out Z5
1D_	B3 mask	Spare	Spare	Spare	B3 counter	Spare	Spare	Spare								

† In: Incoming-overhead byte

Out: Insert-overhead byte

F[-n]: Overhead byte from previous nth frame

Deb: Debounced-overhead byte

SDNS007B - OCTOBER 1993 - REVISED JUNE 1995

SDNS007B - OCTOBER 1993 - REVISED JUNE 1995

PRINCIPLES OF OPERATION

interfaces and operating modes

The control bits used for various modes are summarized below in the following table:

ADDRESS	BIT 7	BIT 6	BIT 5	BIT 4	BIT 3	BIT 2	BIT 1	BIT 0
0FA	STS-1	PARA			ALTOW			
1F9							RXRTM	
1FA	SPE	TCLK	RCLK					

line-side interface

In the receive direction, the line-side interface consists of the incoming 51.84-MHz clock (RLCI), the incoming STS-1 data (RLDI), and the optional frame pulse (RFRI). When used, RFRI allows exit from the OOF state within 125 μ s. The transmit-line interface consists of the reference 51.84-MHz clock (TLCI), the optional frame reference (TFRI), the outgoing clock (TLCO), and the outgoing STS-1 data (TLDO). The line-side interface supports either the STS-1 mode or the STS-N mode as summarized in the following table:

MODE	SELECTION	DESCRIPTION	
STS-1	STS-1=1	Both incoming and outgoing line data are scrambled. The chip descrambles RLDI and scrambles TLDO.	
		The receive B1 byte contains B1 BIP-8 parity. The chip compares the incoming B1 byte to calculated B1 and adds the parity errors to the receive B1 counter.	
		The transmit B1 byte is the outgoing B1 BIP-8 parity. The chip calculates the outgoing B1 parity, exclusive-ORs the result with the outgoing B1 error mask from RAM location 149, and transmits the result on the line.	
STS-N	STS-1=0	Both incoming and outgoing line data are not scrambled.	
		The receive B1 byte contains B1 BIP-8 parity-error indications. The chip adds the ones in the incoming B1 byte to the receive B1 counter.	
		The transmit B1 byte contains the B1 error mask from RAM location 149.	

The clock selection bit (TCLK) allows TLCO to be derived from the following sources:

TCLK	SPE	PARA	SOURCE OF TLCO
0	0	0	TTCI. TFRI cannot be used in this mode.
0	0	1	TPCI. TFRI cannot be used in this mode.
1	0	0	TLCI. TFRI can be used in this mode.
1	0	1	TPCI. TFRI can be used in this mode.
0,1	1	0	TLCI. TFRI can be used in this mode, (SPE only [†]) and serial only.

[†] The SPE-only mode can be used only if the control bit $\overline{\text{RXRTM}} = 0$

terminal-side interface

The receive-direction terminal-side interface consists of the 51.84-MHz serial clock (RTCO), the serial data (RTDO), the payload indicator (RSPE), the C1J1 indicator (RSYN), the 6.48-MHz parallel clock (TPCO), and the parallel data (TPDO7–TPDO0). The transmit terminal-side interface consists of the 51.84-MHz serial clock (TTCI), the serial data (TTDI), the payload indicator (TSPE), the C1J1 or J1 indicator (TSYN), the 6.48-MHz parallel clock (TPCI), and the parallel clock (TPCI), and the parallel data (TPDI7–TPDI0).

SDNS007B - OCTOBER 1993 - REVISED JUNE 1995

PRINCIPLES OF OPERATION

terminal-side interface (continued)

The terminal-side interface supports the following modes:

MODE	SELECTION	DESCRIPTION
	PARA = 0 RXRTM = 1 SPE = 0 RCLK = 0, 1	RTDO is serial nonretimed STS-1 data with all TOH bytes from the line input or RAM.
		TPDO7-TPDO0 is parallel STS-1 data with all TOH bytes from the line input or RAM.
		RSPE is nominally: low width = 24, high width = 696; increment: low width = 32, high width = 688;
		decrement: low width = 16, high width = 704.
		RSYN is high during the C1 and J1 bytes. Numbers are clock periods.
Serial STS1 pass		TTCI and TTDI are used as terminal STS-1 inputs in the transmit direction.
through		TPCI and TPDI 7–TPDI0 are ignored.
		TSPE and TSYN are ignored.
		All TOH bytes can be inserted to/extracted from the terminal.
		The E1 byte can be used for AIS communication.
		Transmit-side alarms and performance monitors are enabled.
		RTCO and TPCO are derived from RLCI.
		RTDO is serial nonretimed STS-1 data with all TOH bytes from the line input or RAM.
		TPDO7-TPDO0 is parallel STS-1 data with all TOH bytes from the line input or RAM.
		RSPE is nominally: low width = 3, high width = 87; increment: low width = 4, high width = 86;
		decrement: low width = 2, high width = 88.
	PARA = 1 RXRTM = 1 SPE = 0 RCLK = 0, 1	RSYN is high during the C1 and J1 bytes. Numbers are clock periods.
Parallel STS1		TTCI and TTDI are ignored.
pass through		TPCI and TPDI7–TPDI0 are used as terminal STS-1 inputs in the transmit direction.
		TSPE and TSYN are ignored.
		All TOH bytes can be inserted to/extracted from the terminal.
		The E1 byte can be used for AIS communication.
		Transmit-side alarms and performance monitors are enabled.
		RTCO and TPCO are derived from RLCI.
	PARA = 0 RXRTM = 0 SPE = 1	RTDO is serial retimed SPE-only data with only the A1, A2, E1, H1, and H2 bytes inserted into the terminal data.
		TPDO7-TPDO0 consists of all zeros data.
		RSPE is nominally: low width = 1, high width = 29; increment: low width = 1, high width = 45; decrement
		low width = 1, high width = alternate 22, 23.
		RSYN is high during the J1 byte. Numbers are clock periods.
0.1005		TTCI, TTDI, TSPE, and TSYN are used as the terminal SPE-only inputs.
Serial SPE only		TPCI and TPDI 7-TPDI0 are ignored.
		TSPE and TSYN are used.
		No TOH byte can be inserted to /extracted from the terminal.
		The terminal E1 byte can be used for AIS communication only.
		Transmit-side alarms and performance monitors are disabled.
	RCLK = 0	RTCO and TPCO are derived from RLCI.
	RCLK = 1	RTCO and TPCO are derived from TLCI.

PRODUCT PREVIEW

PRINCIPLES OF OPERATION

microprocessor interface

The microprocessor interface consists of multiplexed address/data bus (AD7–AD0), address bit (A8), address latch enable (ALE), chip select (\overline{SEL}), read enable (\overline{RD}), write enable (\overline{WR}), and interrupt (INT) signals. In addition, the TNETS3001 provides both software- and hardware-interrupt capability based on the status of the receive and transmit transport- and path-overhead alarms.

orderwire/APS interface

In the receive direction, the section-orderwire byte (E1), the line-orderwire byte (E2) and the APS bytes (K1 and K2) are multiplexed to form a 576-kbit/s bit-serial stream. This interface consists of the multiplexed 576-kbit/s data signal (ORDO), a clock signal (ORCO), and three framing pulses: a section-framing pulse (SRFR), a line-framing pulse (LRFR) and an APS-framing pulse (RAP).

The transmit-side orderwire/APS interface is similar. The section-orderwire byte (E1), the line-orderwire byte (E2) and the APS bytes (K1 and K2) are demultiplexed from a 576-kbit/s bit-serial stream. This interface consists of the multiplexed 576-kbit/s data signal (OTDI), a clock signal (OTCO), and three framing pulses: a section-orderwire-framing pulse (STFR), a line-orderwire-framing pulse (LTFR), and an APS-framing pulse (TAP).

MODE	SELECTION	DESCRIPTION
	ALTOW = 0	SRFR occurs one ORCO clock cycle before MSB of E1 byte in ORDO.
Normal-orderwire		LRFR occurs one ORCO clock cycle before MSB of E2 byte in ORDO.
interface		STFR occurs one ORCI clock cycle before MSB of E1 byte is expected in OTDI.
		LTFR occurs one ORCI clock cycle before MSB of E2 byte is expected in OTDI.
	ALTOW = 1	SRFR occurs coincident with the MSB of E1 byte in ORDO.
Alternate-orderwire		LRFR occurs coincident with the MSB of E2 byte in ORDO.
interface		STFR occurs coincident with the MSB of E1 byte is expected in OTDI.
		LTFR occurs coincident with the MSB of E2 byte is expected in OTDI.

The orderwire interface supports two modes:

datacom interfaces

In the receive direction, the section-overhead data-communication channel interface consists of a receive data-out signal (SRDO) and a clock-out signal (SRCO). The line-overhead data-communication interface consists of a receive data-out signal (LRDO) and a clock-out signal (LRCO).

In the transmit direction, the section-overhead data-communication channel interface consists of a data-in signal (STDI) and a clock-out signal (STCO). The line-overhead data-communication channel interface consists of a data-in signal (LTDI) and a clock-out signal (LTCO).

SDNS007B - OCTOBER 1993 - REVISED JUNE 1995

PRINCIPLES OF OPERATION

power and ground interfaces with recommended external components

Figure 19 shows the recommended power and ground connections for the TNETS3001 device. Separate planes should be employed for V_{CC} and GND. Bypass networks consist of 10-µF capacitors in parallel with 0.1-µF capacitors as shown. These 0.1-µF capacitors should be RF quality and closely connected to each of the device voltage leads to decouple them to ground. A Fair-Rite Products #2743002111 or equivalent ferrite bead is recommended in the AV_{CC} supply-voltage path.

NOTE A: All capacitors are 0.1 μ F unless otherwise specified.

Figure 19. TNETS3001 Power-Supply Connections

throughput delays

The TNETS3001 throughput delays below are listed in terms of STS-1 bit times (1 bit = 19.29 ns nominal):

- The throughput delay from the terminal-side input to the line-side transmit output is from 65 to 113 bits.
- The throughput delay from the line-side receive input to the terminal-side output is from 65 to 133 bits in the receive-retiming mode or is a fixed 25 bits when not in the receive-retiming mode (see bit 1 of register 1F9H).

SDNS007B - OCTOBER 1993 - REVISED JUNE 1995

MECHANICAL DATA

PLASTIC J-LEADED CHIP CARRIER

FN/S-PQCC-J** 20 PIN SHOWN

NOTES: A. All linear dimensions are in inches (millimeters).

B. This drawing is subject to change without notice.

C. Dimensions D1 and E1 do not include mold flash or protrusion. Protrusion shall not exceed 0.010 (0,25) on any side.

D. Falls within JEDEC MO-047

E. Maximum deviation from coplanarity is 0.004 (0,10).

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any semiconductor product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

TI warrants performance of its semiconductor products and related software to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

Certain applications using semiconductor products may involve potential risks of death, personal injury, or severe property or environmental damage ("Critical Applications").

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS.

Inclusion of TI products in such applications is understood to be fully at the risk of the customer. Use of TI products in such applications requires the written approval of an appropriate TI officer. Questions concerning potential risk applications should be directed to TI through a local SC sales office.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards should be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or services described herein. Nor does TI warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used.

Copyright © 1996, Texas Instruments Incorporated