SN5496, SN54LS96 ... J OR W PACKAGE

SN7496 . . . N PACKAGE

SN74LS96 . . . D OR N PACKAGE (TOP VIEW)

15 QA

14 🛛 OB

13 0C 12 GND

11 0 0D

10 0 QE

9 SER

A 🗌 2

B []3

C []4

D 6 E 7

Vcc []5

PRE 8

- N-Bit Serial-To-Parallel Converter
- N-Bit Parallel-To-Serial Converter
- N-Bit Storage Register
 - TYPICAL
 - TYPE PROPAGATION TYPICAL

	DELAY TIME	POWER DISSIPATION
'96	25 ns	240 mW
'LS96	25 ns	60 mW

description

These shift registers consist of five R-S master-slave flip-flops connected to perform parallel-to-serial or serial-to-parallel conversion of binary data. Since both inputs and outputs for all flip-flops are accessible, parallel-in/parallel-out or serial-in/serial-out operation may be performed.

All flip-flops are simultaneously set to a low output level by applying a low-level voltage to the clear input

while the preset is inactive (low). Clearing is independent of the level of the clock input.

The register may be parallel loaded by using the clear input in conjunction with the preset inputs. After clearing all stages to low output levels, data to be loaded is applied to the individual preset inputs (A, B, C, D, and E) and a high-level load pulse is applied to the preset enable input. Presetting like clearing is independent of the level of the clock input.

Transfer of information to the outputs occurs on the positive-going edge of the clock pulse. The proper information must be set up at the R-S inputs of each flip-flop prior to the rising edge of the clock input waveform. The serial input provides this information to the first flip-flop, while the outputs of the subsequent flip-flops provide information for the remaining R-S inputs. The clear input must be high and the preset or preset enable inputs must be low when clocking occurs.

	INPUTS									0	UTPU	rs	
	PRESET		PF	ESI	ET				_				
CLEAR	ENABLE	A	8	С	D	£	CLOCK	SERIAL	QA	0 8	٥C	٥D	σD
Ł	Ł	х	х	х	х	x	x	x	L	L	L	L	L
L	×	L	L	ε	Ł	L	x	x	ι	Ļ	ι	ι	ι
н	н	н	н	н	н	н	×	x	н	н	н	н	н
Ĥ	н	L	L	Ł	Ł	L	L	x	0 _{A0}	0 _{B0}	o _{C0}	aDO	a _{EO}
н	н	н	٤	н	L	н	L	x	н			0 _{D0}	
н	L	х	x	х	х	x	L	х	O _{AO}	0 ₈₀	aco	0 ₀₀	Q _{EO}
н	Ł	х	x	х	х	х	1	н	н	QAn	0 _{Bn}	QCn	0 _{Dn}
н	L	x	x	х	х	х	t	L	L	Q _{An}	Q _{Bn}	Q _{Cn}	0 _{Dn}

H = high level (steady state). L = low level (steady state)

X = irrelevant (any input, including transistion)

t = transistion from low to high level

 $Q_{A0}, Q_{B0}, etc = the level of Q_A, Q_B, etc, respectively before the indicated steady$ state input conditions were established.

 ${\rm Q}_{An},\,{\rm Q}_{Bn}$ etc = the level of ${\rm Q}_A,\,{\rm Q}_B,$ etc, respectively before the most recent \uparrow transistion of the clock.

logic symbol[†]

[†]This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

PRODUCTION DATA documents contain information current as of publication date. Products conform to specifications per the terms of Texas Instruments standard werranty. Production processing does not necessarily include testing of all parameters.

SN5496, SN54LS96, SN7496, SN74LS96 **5-BIT SHIFT REGISTERS**

INSTRUMENTS POST OFFICE BOX 655012 . DALLAS, TEXAS 75265

typical clear, shift, preset, and shift sequences

SN5496, SN54LS96, SN7496, SN74LS96 **5-BIT SHIFT REGISTERS**

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, V _{CC} (see Note 1)	7 V
Input voltage (see Note 2): '96	5.5 V
1596	
Operating free-air temperature: SN54'	55°C to 125°C
SN74'	0°C to 70°C
Storage temperature range	65°C to 150°C

NOTES: 1. Voltage values are with respect to network ground terminal.

T

2. Input voltage must be zero or positive with respect to network ground terminal.

SN5496, SN7496 **5-BIT REGISTERS**

recommended operating conditions

		SN5496			SN7496		
	MIN	NOM	MAX	MIN	NOM	MAX	UNIT
Supply voltage, V _{CC}	4.5	5	5.5	4.75	5	5.25	V
High-level output current, IOH			400			-400	μА
Low-level output current, IOL			16			16	mA
Clock frequency, fclock	0		10	0		10	MH7
Width of clock input pulse, tw(clock)	35			35			ns
Width of preset and clear input pulse, tw	30			30			ns
Serial input setup time, t _{su} (see Figure 1)	30			30			ns
Serial input hold time, th (see Figure 1)	0			0			ns
Operating free-air temperature, TA	-55		125	0		70	°C

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

				SN5496					UNIT		
	PARAMETER		TEST CO	NDITIONS	MIN	TYP‡	MAX	MIN	TYP‡	MAX	UND
VIH	High-level input voltage				2			2			V
VIL	Low-level input voltage				1		0.8			0.8	v
∨он	High-level output voltage		V _{CC} = MIN, V _{IL} = 0.8 V,	V _{IH} = 2 V, I _{OH} = -400 μA	2.4	3.4		2.4	3.4		v
VOL	L Low-level output voltage		V _{CC} = MIN, V _{1L} = 0.8 V,	V _{1H} = 2 V, I _{OL} = 16 mA		0.2	0.4		0.2	0.4	v
4	Input current at maximum	input voltage	V _{CC} = MAX,	V ₁ = 5.5 V			1			1	mA
ін		any input except preset enable	Vcc = MAX,	Vi = 2.4 V			40			40	μA
	5	preset enable	00	•			200			200	1
[‡] 1L	Low-level input current	any input except	V _{CC} = MAX,	VI = 0.4 V			-1.6			-1.6	mA
•		preset enable	1	-			-8			-8]
los	Short-circuit output curre	nt§	V _{CC} = MAX	······································	-20		-57	-18		-57	mA
TCC	Supply current		V _{CC} = MAX,	See Note 3	1	48	68	·	48	79	mA

[†]For conditions shown at MIN or MAX, use the appropriate value specified under recommended operating conditions. [‡]All typical values are at $V_{CC} = 5 V$, $T_A = 25^{\circ}C$. [§]Not more than one output should be shorted at a time.

NOTE 3: ICC is measured with the clear input grounded and all other inputs and outputs open.

switching characteristics, VCC = 5 V, $TA = 25^{\circ}C$

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
tpLH Propagation delay time, low-to-high-level output from clock	- C _L = 15 pF, - R _L = 400 Ω, - See Figure 1		25	40	ns
tPHL Propagation delay time, high-to-low-level output from clock			25	40	ns
tpLH Propagation delay time, low-to-high-level output from preset or preset enable			28	35	ns
tPHL Propagation delay time, high-to-low-level output from clear				55	ns

2-308

SN54LS96, SN74LS96 **5-BIT SHIFT REGISTERS**

recommended operating conditions

	S	SN54LS96			SN74LS96			
	MIN	NOM	MAX	MIN	NOM	MAX	UNIT	
Supply voltage, V _{CC}	4.5	5	5.5	4.75	5	5.25	v	
High-level output current, IOH			- 400	1		-400	μA	
Low-level output current, IOL			4	1		8	mA	
Clock frequency, fctock	0		25	0		25	MHz	
Width of clock input pulse, tw(clock)	20			20			ns	
Width of preset and clear input pulse, tw	30			30			ns	
Serial input setup time, tsetup (see Figure 1)	30			30			ns	
Serial input hold time, thold (see Figure 1)	0			0			ns	
Operating free-air temperature, TA	-55		125	0		70	΄C	

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER		Te		at .	s	N54LS	96	S				
			TEST CONDITIONS [†]			TYP‡	MAX	MIN	TYP‡	MAX	UNIT	
ViH	High-level input volt	tage				2			2			V
VIL	Low-level input volt	age						0.7			0.8	V
VIK Input clamp voltage			V _{CC} = MIN,	l ₁ = -18 mA		1		-1.5			-1.5	V
VOH High-level output voltage		V _{CC} = MIN, VIL = VIL max	V _{IH} = 2 V, <, I _{OH} = -400 µ/	4	2.5	3.5		2.7	3.5		v	
VOL Low-level output voltage		V _{CC} = MIN,	V _{IH} = 2 V,	IOL = 4 mA		0.25	0.4		0.25	0.4	v	
VOL	AUE conserver output voltage		VIL = VIL max		IOL = 8 mA				1	0.35	0.5	
	Input current at maximum	Preset enable	Vcc = MAX,	Vi = 7 V	- · · · · ·		•	0.5			0.5	mΑ
Ц	input voltage	All others						0,1			0.1	
1	High-level	Preset enable	V _{CC} = MAX,	$V_{i} = 2.7 V$				100			100	μА
ЧH	input current	All others		•1 ••				20			20	
1	Low-level	Preset enable	V					2			2	
ЧL.	input current	All others	$V_{CC} = MAX,$	vi - 0.4 v	•	<u> </u>		-0.4			-0.4	mA
los	Short-circuit output	t current §	V _{CC} = MAX			-20		-100	20		-100	mA
'cc	Supply current		V _{CC} = MAX,	See Note 3		1	12	20		12	20	mA

 $\frac{1}{2}$ For conditions shown at MIN or MAX, use the appropriate value specified under recommended operating conditions. All typical values are at V_{CC} = 5 V, T_A = 25°C. $\frac{8}{2}$ Not more than one output should be shorted at a time, and duration of the short-circuit should not exceed one second.

NOTE 3: ICC is measured with the clear input grounded and all other inputs and outputs open.

switching characteristics, V_{CC} = 5 V, $T_A = 25^{\circ}C$

PARAMETER	TEST CONDITIONS	MIN	ТҮР	MAX	UNIT
tPLH Propagation delay time, low-to-high-level output from clock	0 - 15 - 5		25	40	ns
tPHL Propagation delay time, high-to-low-level output from clock	$C_L = 15 \text{pF},$		25	40	ns
tPLH Propagation delay time, low-to-high-level output from preset or preset enable	$R_{L} = 2 k\Omega,$ See Figure 1		28	35	ns
tPHL Propagation delay time, high-to-low-level output from clear	See Figure 1			55	ns

SN5496, SN54LS96, SN7496, SN74LS96 **5-BIT SHIFT REGISTERS**

PARAMETER MEASUREMENT INFORMATION

VOLTAGE WAVEFORMS

NOTES: A. Input pulses are supplied by pulse generators having the following characteristics: duty cycle \leq 50%, Z_{out} \approx 50 Ω; for '96, t_r \leq 10 ns, t_f \leq 10 ns, and for 'LS96 t_r = 15 ns, t_f = 6 ns.

- B. CL includes probe and jig capacitance.
- C. All diodes are 1N3064 or equivalent.
- D. Preset may be tested by applying a high-level voltage to the individual preset inputs and pulsing the preset enable or by applying a high-level voltage to the preset enable and pulsing the individual preset inputs.
- E. QA output is illustrated. Relationship of serial input to other Q outputs is illustrated in the typical shift sequence.
- F. Outputs are set to the high level prior to the measurement of tpHL from the clear input.
- G. For '96, V_{ref} = 1.5 V; for 'LS96 V_{ref} = 1.3 V.

FIGURE 1-SWITCHING TIMES

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any semiconductor product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

TI warrants performance of its semiconductor products and related software to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

Certain applications using semiconductor products may involve potential risks of death, personal injury, or severe property or environmental damage ("Critical Applications").

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS.

Inclusion of TI products in such applications is understood to be fully at the risk of the customer. Use of TI products in such applications requires the written approval of an appropriate TI officer. Questions concerning potential risk applications should be directed to TI through a local SC sales office.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards should be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or services described herein. Nor does TI warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used.

Copyright © 1996, Texas Instruments Incorporated