SN54S260, SN74S260 DUAL 5-INPUT POSITIVE-NOR GATES

SDLS208

DECEMBER 1983 - REVISED MARCH 1988

 Package Options Include Ceramic Chip Carriers and Flat Packages in Addition to Plastic and Ceramic DIPs

 Dependable Texas Instruments Quality and Reliability

description

These devices contain two independent 5-input positive -NOR gates. They perform the Boolean function $Y = \overline{A + B + C + D + E}$ in positive logic.

The SN54S260 is characterized for operation over the full military temperature range of -55° C to 125° C. The SN74S260 is characterized for operation from 0°C to 70°C.

logic diagram (each gate)

logic symbol[†]

[†]This symbol is in accordance with ANSI/IEEE Std. 91-1984 and IEC Publication 617-12.

Pin numbers shown are for D, J. N, and W packages.

SN548260 . . . J OR W PACKAGE SN74S260 . . . D OR N PACKAGE (TOP VIEW)

1	$\overline{\bigcup}$ 14	bvcc
2	13	1E
3	12	םום
4	11	2E
5	10	2D
6	9	2C
7	8]2B
	3 4 5	2 13 3 12 4 11 5 10

SN54S260 . . . FK PACKAGE (TOP VIEW)

NC - No internal connection

PRODUCTION DATA documents contain information current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.

SN54S260, SN74S260 DUAL 5-INPUT POSITIVE-NOR GATES

schematic (each gate)

Resistor values shown are nominal. The portion of the schematic within the deshed-line is repeated for each additional input.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, V _{CC} (see Note 1)		7 V
	SN54'	
	SN74'	0°C to 70°C
Storage temperature range		-65°C to 150°C

NOTE 1: Voltage values are with respect to network ground terminal.

recommended operating conditions

		s	SN54\$260			SN74S260			
		MIN	TYP	MAX	MIN	ТҮР	MAX	UNIT	
Vcc	Supply voltage	4.5	5	5.5	4.75	5	5.25	v	
VIH	High-level input voltage	2			2			V	
VIL	Low-level input voltage			0.8			0.8	V	
юн	High-level output current			- 1			- 1	mΑ	
I OL	Low-level output current			20			20	mA	
TA	Operating free-air temperature	- 55		125	0		70	°C	

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS *		SN54S260			SN74S260				
			MIN	түр‡	МАХ	MIN	түр‡	MAX	UNIT	
 Viк	V _{CC} = MIN,	I _I = 18 mA				- 1.2			- 1.2	V
VOH	V _{CC} = MIN,	V _{1L} = 0.8 V,	I _{OH} = 1 mA	2.5	3.4		2.7	3.4		V
VQL	V _{CC} = MIN,	VIH = 2 V,	IOL = 20 mA			0.5			0.5	V
II	V _{CC} = MAX.	V ₁ = 5.5 V				1			1	mA
	V _{CC} = MAX,	V _{1H} = 2.7 V				50			50	μA
	V _{CC} = MAX,	V _{IL} = 0.5 V				- 2			- 2	mA
IOSS	V _{CC} = MAX			- 40		- 100	- 40	_	- 100	mΑ
ССН	V _{CC} = MAX,	V = 0 V			17	29		17	29	mΑ
ICCL	V _{CC} = MAX,	See Note 2			26	45		26	45	mΑ

+ For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

‡ All typical values are at V_{CC} = 5 V, T_A = 25°C.

§Not more than one output should be shorted at a time, and the duration of the short-circuit should not exceed one second. NOTE 2: One input at 4.5 V, all others at GND.

switching characteristics, V_{CC} = 5 V, T_A = 25° C (see note 3)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	TEST CON	MIN	түр	МАХ	UNIT	
1PLH	Acu	v	B. = 290 O	<u> </u>		4	5.5	ris
tPHL	Any Y	ni - 200 sz,	R _L = 280 Ω, C _L = 15 pF		4	6	пs	

NOTE 3: See General Information Section for load circuits and voltage waveforms.

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any semiconductor product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

TI warrants performance of its semiconductor products and related software to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

Certain applications using semiconductor products may involve potential risks of death, personal injury, or severe property or environmental damage ("Critical Applications").

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS.

Inclusion of TI products in such applications is understood to be fully at the risk of the customer. Use of TI products in such applications requires the written approval of an appropriate TI officer. Questions concerning potential risk applications should be directed to TI through a local SC sales office.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards should be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or services described herein. Nor does TI warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used.

Copyright © 1996, Texas Instruments Incorporated