SN54S182 . . . J OR W PACKAGE

SN74S182 ... D OR N PACKAGE

(TOP VIEW)

2

-∕16□

15 **P**2

G1

P1 Г

DECEMBER 1972-REVISED MARCH 1988

Vcc

SDLS206

Directly Compatible for Use With: . SN54LS181/SN74LS181. SN54S281/SN74S281, SN54S381, SN74S381, SN54S481/SN74S481

PIN DESIGNATIONS

ALTERNATIVE	DESIGNATIONS	PIN NOS.	FUNCTION
Ğ0, Ĝ1, Ğ2, Ğ3	50, Ĝ1, <u>62, Ĝ3</u> 60, G1, G2, G3		CARRY GENERATE INPUTS
PO, P1, P2, P3	P0, P1, P2, P3	4, 2, 15, 6	CARRY PROPAGATE INPUTS
Cn	Ē	13	CARRY INPUT
$\begin{array}{cc} C_{n+x}, C_{n+y}, & \overline{C}_{n+x}, \overline{C}_{n+y}, \\ C_{n+z} & \overline{C}_{n+z} \end{array}$		12, 11, 9	CARRY OUTPUTS
G	Y	10	CARRY GENERATE OUTPUT
P X		7	CARRY PROPAGATE OUTPUT
Vcc		16	SUPPLY VOLTAGE
G	ND	8	GROUND

[†]Interpretations are illustrated in the 'LS181, 'S181 data sheet.

logic symbol[‡]

G0 Г G2 3 14 PO Π4 Cn 13 🗌 G3 **1**5 12 Cn + x Ē3 11 C_{n+y} P 10 🗌 G 7 GND Γ 9 🗌 c_{n+z} SN54S182 ... FK PACKAGE (TOP VIEW) រភាទ ភ ភ្លាន 1 20 19 2 []₄ []₅ G2 18 🗍 \mathbf{C}_{n} 17 06 NC 16 [<u>٦</u> 15 [

[‡] This symbol is in accordance with ANSI/IEEE Std. 91-1984 and IEC Publication 617-12.

Pin numbers shown are for D, J, N, and W packages.

description

The SN54S182 and SN74S182 are high-speed, look-ahead carry generators capable of anticipating a carry across four binary adders or group of adders. They are cascadable to perform full look-ahead across n-bit adders. Carry, generatecarry, and propagate-carry functions are provided as enumerated in the pin designation table above.

When used in conjunction with the 'LS181 or 'S181 arithmetic logic unit (ALU), these generators provide high-speed carry look-ahead capability for any word length. Each 'S182 generates the look-ahead (anticipated carry) across a group of four ALUs and, in addition, other carry look-ahead circuits may be employed to anticipate carry across sections of four look-ahead packages up to n-bits. The method of cascading 'S182 circuits to perform multilevel look-ahead is illustrated under typical application data.

The carry functions (inputs, outputs, generate, and propagate) of the look-ahead generators are implemented in the compatible forms for direct connection to the ALU. Reinterpretations of carry functions as explained on the 'LS181 and 'S181 data sheet are also applicable to and compatible with the look-ahead generator. Logic equations for the 'S182 are:

 $C_{n+x} = G0 + P0 C_{n}$ $C_{n+y} = G1 + P1 G0 + P1 P0 C_n$ C_{n+z} = G2 + P2 G1 + P2 P1 G0 + P2 P1 P0 C_n or G = G3 + P3 G2 + P3 P2 G1 + P3 P2 P1 G0 $\overline{P} = \overline{P3P2P1P0}$

 $\overline{C}_{n+x} = \overline{Y0} (X0 + \overline{C}_n)$ $\overline{C_{n+y}} = \overline{Y1} [X1 + Y0 (X0 + C_n)]$ $\overline{C}_{n+z} = \overline{Y2} \{ X2 + Y1 [X1 + Y0 (X0 + C_n)] \}$ Y = Y3 (X3 + Y2) (X3 + X2 + Y1) (X3 + X2 + X1 + Y0)X = X3 + X2 + X1 + X0

PRODUCTION DATA documents contain information current as of publication date. Products conferm to specifications per the terms of Texas Instruments spacifications per the terms of terms in terms in terms in terms in terms of the standard warranty. Production processing does not necessarily include testing of all parameters.

FUNCTION TABLE FOR GOUTPUT INPUTS OUTPUT P1 G ĞЗ **G**2 Ğ1 G0 P3 **P**2 х х L L х х х х х х х L х х L L х х х L L х L Ł L L L х х L L х н All other combinations

FUNCTION TABLE

INPUTS	OUTPUT
P3 P2 P1 P0	P
L L L L	L
All other combinations	н

F	FOR C _{n+x} OUTPUT								
li	NPUT	OUTPUT							
G0	PO	Сл	C _{n+x}						
L	х	х	н						
x	L	H	H						
А	ll othe								
com	binati	ons							

FUNCTION TABLE

FUNCTION TABLE FOR C_{n+y} OUTPUT

	IN	OUTPUT			
Ğ1	ĞΟ	Ρ 1	ΡO	cn	C _{n+y}
L	х	Х	х	х	н
х	L	L	х	x	н
х	х	L	L	н	н
		loth			L
	comb	pinat	ions		

FUNCTION TABLE FOR Cn+z OUTPUT

		OUTPUT					
Ĝ2	Ğ1	G٥	P2	P1	P 0	Cn	C _{n+2}
L	x	x	х	х	x	x	н
x	L	х	L	х	х	x	н
х	х	L	L	L	х	х	н
х	х	х	L	L	L	н	н
	All	other	comt	sinati	ons		L

H = high level, L = low level, X = irrelevant

Any inputs not shown in a given table are irrelevant with respect to that output.

logic diagram (positive logic)

Pin numbers shown are for D, J, N, and W packages.

schematics of inputs and outputs

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, VCC (see Note 1)	
Input voltage	
Interemitter voltage (see Note 2)	5.5 V
Operating free-air temperature range: SN	√54S182
SN'	V74S182 0°C to 70°C
Storage temperature range	–65°C to 150°C

NOTES: 1. Voltage values, except interemitter voltage, are with respect to network ground terminal.

2. This is the voltage between two emitters of a multiple-emitter input transistor. For these circuits, this rating applies to each G input in conjunction with any other G input or in conjunction with any P input.

recommended operating conditions

	S	SN54S182			SN74S182		
	MIN	NOM	MAX	MIN	NOM	MAX	UNIT
Supply voltage, V _{CC}	4.5	5	5.5	4.75	5	5.25	v
High-level output current, IOH			-1			-1	mΑ
Low-level output current, IOL			20			20	mΑ
Operating free-air temperature, TA	-55		125	0		70	°C

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER		TEST CONDITIONS [†]	5	SN54S18	32	5	N74S18	32		
PARAMETER			TEST CONDITIONS.	MIN	TYP‡	MAX	MIN	TYP‡	MAX	UNIT
VIH	High-level input volt	age		2			2			V
VIL	Low-level input volt	age				0.8			0.8	V
VIK	Input clamp voltage		Vcc = MIN. II = -18 mA			-1.2			-1.2	V
∨он	High-level output voltage		V _{CC} = MIN, V _{IH} = 2 V, V _{IL} = 0.8 V, I _{OH} =1 mA	2.5	3.4		2.7	3.4		v
VOL			$V_{CC} = MIN, V_{1H} = 2V,$ $V_{1L} = 0.8V, I_{OL} = 20 \text{ mA}$			0.5			0.5	v
4	Input current at max	timum input voltage	V _{CC} = MAX, V ₁ = 5.5 V	1		1			1	mΑ
	High-level input current	C _n input		1		50			50	
		P3 input				100			100	100 150 200 μΑ
1		P2 input				150			150	
ΗH		PO, P1, ar G3 input	$V_{CC} = MAX, V_1 = 2.7 V$			200			200	
		GO or G2 input]			350			350	
		G1 input				400			400]
		C _n input				-2			-2	
		P3 input				-4			-4	
	Low-level	P2 input				-6			6	
11	input current	PO, P1, or G3 inpuτ	VCC = MAX, VI = 0.5 V			-8			-8	mA
		G0 or G2 input]			-14			-14	
		G1 input	1			-16			-16	
los	Short-circuit output current§		V _{CC} = MAX	-40		-100	-40		-100	mA
ссн	Supply current, all or	utputs high	V _{CC} = 5 V, See Note 3		35	65		35	70	mΑ
CCL	Supply current, all or	utputslow	V _{CC} = MAX, See Note 4		69	99		69	109	mA

[†] For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable type.

[‡] All typical values are at V_{CC} = 5 V, T_A = 25 °C. [§] Not more than one output should be shorted at a time and duration of the short-circuit test should not exceed one second. NOTES: 3. I_{CCH} is measured with all outputs open, inputs $\overline{P}3$ and $\overline{G}3$ at 4.5 V, and all other inputs grounded. MAX is determined at 5.5 V. 4. I_{CCL} is measured with all outputs open; inputs $\overline{G}0$, $\overline{G}1$, and $\overline{G}2$ at 4.5 V; and all other inputs grounded.

switching characteristics, VCC = 5 V, TA = 25° C

PARAMETER	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	MIN TYP	MAX	דומט
^t PLH	G0, G1, G2, G3,	G0, G1, G2, G3, C _{n+x} , C _{n+y} ,	4.5	7		
^t PHL	P0, P1, P2, or P3	C _{n+x} , C _{n+y} , or C _{n+z}		4.5	7	ns
tPLH	G0, G1, G2, G3,	Ğ		5	7.5	
ΦHL	P1, P2, or P3	,	$R_{L} = 280 \Omega, C_{L} = 15 pF,$	7	10.5	ns
^t PLH	P0, P1, P2, or P3	P	See Note 5	4.5	6.5	05
tPHL.			6.5	10		
tPLH	Cn	C _{n+x} , C _{n+y} , or C _{n+z}		6.5	10	ns
^t PHL		or C _{n+z}		7	10.5	115

NOTE 5: Load circuits and voltage waveforms are shown in Section 1.

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any semiconductor product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

TI warrants performance of its semiconductor products and related software to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

Certain applications using semiconductor products may involve potential risks of death, personal injury, or severe property or environmental damage ("Critical Applications").

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS.

Inclusion of TI products in such applications is understood to be fully at the risk of the customer. Use of TI products in such applications requires the written approval of an appropriate TI officer. Questions concerning potential risk applications should be directed to TI through a local SC sales office.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards should be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or services described herein. Nor does TI warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used.

Copyright © 1996, Texas Instruments Incorporated