SN54LS671, SN54LS672, SN74LS671, SN74LS672 4-BIT UNIVERSAL SHIFT REGISTERS/LATCHES WITH 3-STATE OUTPUTS SDLS194 D2638, JANUARY 1981 - REVISED MARCH 1988

4-Bit Universal Shift Registers/Latches

- Multiplexed Outputs for Shift Register or Latched Data
- Choice of Direct SR Clear ('LS671) or Synchronous SR Clear ('LS672)
- 3-State Outputs Drive Bus Lines Directly
- Expandable to Any Word Length

description

The 'LS671 and 'LS672 each contain a 4-bit universal shift register (similar to the 'LS194A) and a 4-bit storage register (similar to the 'LS175) multiplexed to a 3-state output stage (similar to the 'LS258). The user has the option of selecting the shift or storage register via the register/shift select input R/\overline{S} . The 'LS671 has a direct-overriding shift register clear while the 'LS672 features a synchronous shift register clear. The shift register has four distinct modes of operation, namely:

Inhibit clock (do nothing) Shift right (in the direction Ω_A toward Ω_D) Shift left (in the direction Ω_D toward Ω_A) Parallel (broadside) load

A cascade output for the shift register is provided so that full shift register functionality is provided even while the outputs are in the high-impedance mode. The cascade output presents Ω_A data in the shift-left mode, Ω_D data in the shift-right mode.

Both the shift register clock and the latch clock are triggered on the positive transition. The output control (\overline{G}) activates Q_A thru Q_D when low, it places Q_A thru Q_D into the high-impedance state when high.

SN54LS671, SN54LS672 . . . J PACKAGE

SN74LS871, SN74LS672 . . . DW OR N PACKAGE (TOP VIEW)

	1 2 3 4 5 6 7 8 9	20 19 18 17 16 15 14 13 12	
	10	11	

SN54LS671, SN54LS672...FK PACKAGE (TOP VIEW)

PRODUCTION DATA documents contain information current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.

logic diagram (positive logic)

. .

Pin numbers shown are for DW, J and N packages.

logic symbols[†]

[†]These symbols are in accordance with ANSI/IEEE Std. 91-1984 and IEC Publication 617-12. Pin numbers shown are for DW, J, and N packages.

FUNC	TION	TABL	F
1 0110		100	

							SR	ск_	SER	IAL		PARA	ALLEL		Į	PAR	ALLEL		
			SR N	IODE	S671	S672	INP	UTS	TS INPU'		INPUTS OUTPUTS								
G R/S SRCLA	SRCLR	S1	SO	, LSA	PST,	SL	SR	A	B	С	D	QA	٥ß	Q _C	٥ _D	CASC [‡]			
Ļ	L	L	×	×	x	1	x	×	×	×	×	×	L	L	L	L	(‡)		
L	L	н	х	×	L	L	×	х	х	x	×	х	0 _{A0}	a _{B0}	QC0	a _{D0}	(‡)		
L	L	н	L	L	х	х	x	X ,	x	х	х	х	QA0	0 ₈₀	o_{C0}	a _{D0}	н		
L	٤	н	L	н	t	1	х	н	x	х	х	x	н	a _{An}	Ω _{Bn}	Q _{Cn}	0 _{Cn}		
L	L	н	L	н	t	+	х	L	х	х	х	х) L	QAn	0 _{Bn}	Q _{Cn}	Ω _{Cn}		
L	L	н	н	L	÷	t	н	×	х	X	X	×	QBn	Q _{Cn}	Q _{Dn}	н	QBn		
L	L	н	н	L	-	t	L	x	х	х	×	х	QBn	QCn	Q _{Dn}	L	a _{Bn}		
L	L	н	н	н	•	t	х	X	а	b	С	d	а	b	с	đ	н		
н	X) ×	Ļ	н	t	T]	x	X	X	×	х	х	z	Z	Z	z	QCu		
H	x	X	н	L	1	t	X	X	х	X	x	X	z	Z	Z	z	0 _{Bn}		
L	н	×	x	×	х	x	x	×	x	х	х	х	Internal register contents				(‡)		

H = high level (steady state)

L = low level (steady state)

X = irrelevant (any input, including transitions)

t = transition from low to high level

a, b, c, d = the level of steady-state input at A, B, C, or D, respectively

 Q_{AO} , Q_{BO} , Q_{CO} , Q_{DO} = the level of Q_A , Q_B , Q_C , or Q_D , respectively, before the indicated steady-state input conditions were established $Q_{A\Pi}$, $Q_{B\Pi}$, $Q_{C\Pi}$ = the level of Q_A , Q_B , or Q_C , respectively, before the most-recent transition of the clock Z = high-impedance state

⁺ The cascade output displays the D bit of the shift register in mode 1 (S1, S0 = L, H), the A bit in mode 2 (S1, S0 = HL), and is inactive (H) in modes 0 and 3 (S1, S0 = LL and HH).

schematics of inputs and outputs

. ⁻ '

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage V _{CC} (see Note 1)	7 V
Input voltage	7 V
Off-state output voltage	
Operating free-air temperature range: SN54LS671, SN54LS672	25°C
SN74LS671, SN74LS672	70°C
Storage temperature range -65° C to 19	50°C

NOTE 1: Voltage values are with respect to the network ground terminal.

recommended operating conditions

				SN54LS	ř _		SN74L	S'	
			MIN	NOM	MAX	MIN	NOM	мах	דואט ן
Vcc	Supply voltage		4.5	5	5.5	4.75	5	5.25	V
1		Cascade out	1		- 0.4			- 0.4	
OH	High-level output current	Q _A , Q _B , Q _C , Q _D	1		- 1			- 2.6	mA
1	Low-level output current	Cascade out	1		4			8	Am
'OL	cownever og påt carrent	Q _A , Q _B , Q _C , Q _D	T		12	1		24] """
tw	Width of SRCK, RCK, or SRCLF	('LS671 only) input pulse	30			30			ns
tsu	Inactive state setup time	SRCLR before SRCK 1 ('LS671 onty)	30			30	-		ns
		S0 or S1 to SRCK 1	45			45			1
		SRCLR + ('LS672 only) to SRCK †	25			25]
t _{su}	Setup time	A, B, C, D to SRCK 1	30			30			ns
		SRCK f to RCK f	30			30		MAX 5.25 - 0.4 - 2.6 8	1
		SER to SRCK 1	35			35			
^t h	Hold time	Any input from SRCK †	0			0			ns
TA	Operating free-air temperature		- 65		125	0		70	°C

					· · · · · · · · · · · · · · · · · · ·							
		METER		TEST CON		SN54LS	r			UNIT		
	FARA	NEIER		TEST CUN	IDTTONS'	MIN	TYP [‡]					
VIH	High-level input	voltage				2			2			v
VIL	Low-level input	voltage						0.7	1		0.8	v
Vik	Input clamp vol	tage		V _{CC} = MIN, I	= -18 mA			-1.5	1		-1.5	V
			$a_A - a_D$	V _{CC} = MIN,	I _{OH} = -1 mA	2.4	3.1		1			
⊻он	High-level outpu	ut voltage	$Q_A \sim Q_D$	V _{IH} = 2 V,	¹ OH =2.6 mA				2.4	3.1		l v
			CASC	VIL = VIL max	I _{OH} ≈400 µA	2.5	3.2		2.7	3.2]
			$Q_A - Q_D$		I _{OL} = 12 mA		0.25	0.4		0.25	0.4	
. .	1		$Q_A - Q_D$	V _{CC} = MIN,	I _{OL} = 24 mA				1	0.35	0.5	
Vol	Low-level output	tput voltage	CASC	V _{IH} = 2 V	1 _{0L} = 4 mA		0.25	0.4		0.25	0.4	V
			CASC		IOL = 8 mA				1	0.35	0.5	1
	Off-state output	current,	0.0-	V _{CC} = MAX,		_		20	T		20	μA
югн	high-level voltag	e applied	$Q_A - Q_D$	V _{IH} = 2 V,	VIL = VIL max			20			20	μm
1	Off-state output	current,	0. 0.	V _{CC} = MAX,	Vo = 0.4 V,			-20			-20	μA
OZL	low-level voltage	applied	$O_A - O_D$	VIH = 2 V.	V _{1L} = V _{1L} max			-20			-20	μ, μ, μ,
1.	Input current at	maximum		Vcc=MAX,				0.1	Γ		0,1	mA
Ι <u>Ι</u>	input voltage	ge			vi-, v			0.1			Q.1	
ін	High-level input	current		V _{CC} = MAX,	Vj = 2.7 V			20			20	μA
1		current	A, B, C, D	VCC = MAX,	V1 = 0.4 V			- 0.4			-0.4	mA
ԿԵ	L Low-level input current All		All others	VCC - MMAA,	vi - 0.4 v			0.2			-0.2	
100	Short-circuit output current $\frac{Q_A - Q_D}{Q_A - Q_D}$		V _{CC} = MAX,	V0 = 0 V	-30		-130	-30		-130	mA	
los		(por currents	CASC	VCC - MAX,		-20		-100	-20		-100	
		All outputs low		V _{CC} = MAX,	See Note 2		35	70		35	70	
lcc	Supply current	All outputs I	nigh	All outputs	See Note 3		30	65		30	65	mA
		Q _A thru Q _D	, at Hi-Z	open	See Note 4		37	70	1	37	70	

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

. ·

[†] For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions. ^{*}All typical values are at $V_{CC} = 5 V$, $T_A = 25^{\circ}C$.

 $m ^8$ Not more than one output should be shorted at a time and duration of the short-circuit should not exceed one second.

- NOTES: 2. ICCL is tested after two 0-V to 4.5 V to 0-V pulses have been applied to \$RCK and RCK while S0 is at 4.5 V and all other inputs are grounded.
 - 3, ICCH is tested after two 4.5-V to 0-V to 4.5 V pulses have been applied to SACK and ACK while all other inputs are at 4.5 V.
 - 4. I_{CCZ} is tested after two 0-V to 4.5-V to 0-V pulses have been applied to SRCK and RCK while S0 and \overline{G} are at 4.5 V and all other inputs are grounded.

	FROM	τo	TEST CON	DITIONS	Γ	'LS67'	1		'LS67:	2	
PARAMETER	(INPUT)	(OUTPUT)	MODE	LOAD	MIN	ТҮР	MAX	MIN	түр	MAX	דואט
tPLH	SRCK t					31	45		31	45	ns
^t PHL	BRUNT		SHIFTLEFT			14	25		14	25] '''
tPLH	50, S1	CASCADE	OR RIGHT	$R_{L} = 2 k\Omega,$		11	20		12	20	ns
^t PHL	30, 31	CASCADE		CL = 15 pF		11	20		12	20	
^t PHL	SRCK 1		SR CLEAR						19	30	ns
tPHL	SRCER +		SH GEE/M			19	30]			ns
TPLH			SHIFTLEFT			10	20		10	20	ns
TPHL			OR RIGHT			16	25		16	25	
^t PLH	SRCK t		SR LOAD]		10	20		10	20	- ns
^t PHL		1				15	25		15	25	
^t PHL		1	SR CLEAR		[17	30	ns
tPHL	SRCLR +]	BILGERAL			21	30				ាទ
^t PLH	RCK t	a _A - a _D	LATCH	RL=667Ω,		10	20		10	20	ns
^t ₽HL	HOR I			С _L = 45 рF	[15	25		15	25	
TPLH	R/S †]	[12	25		13	25	ns
t₽HL	nya i		MUX			15	25	<u> </u>	15	25	
^t PLH	R/S ↓		WIOX	•		17	25		17	25	ns
[†] PHL				1		16	25		16	25] ""
^t PZH	Ğı		3-STATE	1		16	25		16	25	ns
TPZL	4 10		ENABLE	ł	<u> </u>	19	30		19	30] ""
^t PHZ	Ē t		3-STATE	RL≃667Ω,		16	25		16	25	ns
TPLZ	U 1		DISABLE	CL=5pF		16	25]	16	25] ""

switching characteristics, VCC = 5 V, TA = 25° C, see note 5

NOTE 5: Load circuits and voltage waveforms are shown in Section 1.

TYPICAL APPLICATION DATA

The 'LS671 or 'LS672 can easily be expanded utilizing the cascade output and the SER L and SER R inputs. A typical expansion is shown below.

FIGURE 1 - 'LS671, 'LS672 EXPANDED TO 12 BITS, (3 PACKAGES)

Any desired word length may be obtained using the scheme shown. Corresponding control pins of all the packages are tied in common, i.e., all S0 pins are connected together, all S1 pins are connected together, etc.

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any semiconductor product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

TI warrants performance of its semiconductor products and related software to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

Certain applications using semiconductor products may involve potential risks of death, personal injury, or severe property or environmental damage ("Critical Applications").

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS.

Inclusion of TI products in such applications is understood to be fully at the risk of the customer. Use of TI products in such applications requires the written approval of an appropriate TI officer. Questions concerning potential risk applications should be directed to TI through a local SC sales office.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards should be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or services described herein. Nor does TI warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used.

Copyright © 1996, Texas Instruments Incorporated