SN54LS638, SN54LS639, SN74LS638, SN74LS639 Octal BUS Transceivers

SDLS188 D2636, JANUARY 1981-REVISED MARCH 1988

SN54LS638, SN54LS639 ... J PACKAGE

- Bidirectional Bus Transceivers in High-Density 20-Pin Packages
- Hysteresis at Bus Inputs Improves Noise Margins
- Choice of True or Inverting Logic
- A Bus Outputs are Open-Collector, B Bus Outputs are 3-State

description

These octal bus transceivers are designed for asynchronous two-way communication between open-collector and 3-state buses. The devices transmit data from the A bus (open-collector) to the B bus (3-state) or from the B bus to the A bus depending upon the level at the direction control (DIR) input. The enable input (\overline{G}) can be used to disable the device so the buses are isolated.

FUNCTION TABLE

CONTROL		OPERATION					
INPUTS		ʻL\$638	′LS639				
G DIR		L.3036	L3039				
Ļ	L	B data to A bus	B data to A bus				
L	н	Ā data to B bus A data to B					
н	х	Isolation	isolation				

H = high level, L = low level, X = irrelevant

DEVICE	A OUTPUT	8 OUTPUT	LOGIC
ʻLS638	Open-Collector	3-State	Inverting
'LS639	Open-Collector	3-State	True

schematics of inputs and outputs

SN54LS638, SN54LS639 . . . FK PACKAGE (TOP VIEW)

PRODUCTION DATA documents contain information current as of publication date. Products conform to specifications per the terms of Texas Instruments standard werranty. Production processing does not necessarily include testing of all parameters.

SN54LS638, SN54LS639, SN74LS638, SN74LS639 Octal bus transceivers

logic symbols[†]

 † These symbols are in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12. Pin numbers shown are for DW, J, and N packages.

logic diagrams (positive logic)

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, V _{CC} (see Note 1) 7 V Input voltage (DIR or G) 7 7 V
Off-state output voltage (A or B) 5.5 V
Operating free-air temperature range: SN54LS638, SN54LS639
Storage temperature range

NOTE 1: Voltage values are with respect to the network ground terminal,

SN54LS638, SN54LS639, SN74LS638, SN74LS639 OCTAL BUS TRANSCEIVERS

recommended operating conditions

•••

		SN54LS'				SN74LS			
	MIN	NOM	MAX	MIN	NOM	MAX	UNIT		
Supply voltage, V _{CC}	4.5	5	5.5	4.75	5	5,25	v		
High-level output voltage, VOH IA bus)			5.5			5.5	V		
High-level output current, IOH (B bus)			-12	Γ		-15	mΑ		
Low-level output current, IOL (A or B bus)			12			24	mΑ		
Operating free-air temperature, T _A	-55		125	0		70	°C		

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER		TEST CONDITIONS [†]		SN54LS'			SN74LS'			UNIT	
				MIN	TYPŦ	MAX	MIN	TYP [‡]	MAX	UNIT	
V _{IH}	High-level input voltage				2			2			V
VIL	Low-level input voltage						0.5			0.6	V
VIK	Input clamp voltage	-	V _{CC} = MIN, I _I = -18 mA				-1.5		·	-1.5	V
	Hysteresis (VT+-VT_)		V _{CC} = MIN		0.1	0,4	-	0.2	0.4		V
юн	High-level output current	А	V _{CC} = MIN, V _{IH} = 2 V, V _{IL} = MAX, V _{OH} = 5.5 V				0.1			0.1	mA
<u></u>	High-level output voltage	0	$V_{CC} = MIN, V_{IH} = 2V,$	IOH = -3 mA	2.4			2.4			v
∨он		P	VIL = MAX	IOH = MAX	2			2			
VOL	Low-level output voltage	A or B	V _{CC} = MIN, V _{IH} = 2 V,	IOL = 12 mA		0.25	0.4		0.25	0.4	v
VOL	Low-level output voltage		VIL=MAX	I _{OL} ≈ 24 mA					0.35	0.5	•
^I OZH	Off-state output current, high-level voltage applied	В	V _{CC} = MAX, G at 2 V,	V _O = 2.7 V			20			20	μA
IOZL	Off-state output current low-level voltage applied	A or B	V _{CC} = MAX, G at 2 V,	V _O = 0.4 V			- 0.4			- 0.4	mA
	Input current at maxi-	AorB	LI - NEAM	V ₁ = 5.5 V			0.1			0.1	mA
4	mum input voltage	DIR or G	V _{CC} = MAX	V1 = 7 V			0.1			0.1	
Чн	High-level input current		V _{CC} = MAX, V ₁ = 2.7 V				20			20	μA
ΠL.	Low-level input current		V _{CC} = MAX, V ₁ = 0.4 V				-0.4			-0.4	мм
los	Short-circuit output current §	8	V _{CC} = MAX		-40		-225	_40		225	mA
Іссн	ICCH Supply current, outputs high		V _{CC} = MAX, Outputs open			48	70		48	70	mΑ
^I CCL	Supply current, outputs lo	wc	V _{CC} = MAX, Outputs open			62	90		62	90	mA
lccz	Supply current, outputs o	ff	Vcc = MAX, Outputs open			64	95		64	95	mΑ

[†] For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions,

⁺ All typical values are at $V_{CC} = 5 V$, $T_A = 25^{\circ}C$,

Not more than one output should be shorted at a time, and duration of the short circuit should not exceed one second.

switching characteristics, $V_{CC} = 5 V$, $T_A = 25^{\circ}C$, see note 2

04.0.446750	FROM TO (INPUT) (OUTPUT)	то	TEAT AGAINTIANA	'L\$638			'LS639			
PARAMETER		(OUTPUT)	TEST CONDITIONS	MIN	TYP	MAX	MIN	түр	MAX	UNIT
	А	В			6	10		8	15	
трсн	В	A			17	25		19	25	រាន
	А	В			8	15		11	15	ns
^t PHL	В	A	C _L = 45 ρF, R _L = 667 Ω		14	25		16	25	
^t PLH	Ğ	A		_	26	40		23	40	лs
^t PHL	G	A			43	60		34	50	ns
^t PZH	ច	8		-	23	40		26	40	ns
^t PZL	G	В			31	40		31	40	ns
†PHZ	ច	B	C _L = 5 pF, R _L = 667 Ω		15	25		15	25	ńs
^t PLZ	G	6			15	25		15	25	ns

NOTE 2: Load circuits and voltage waveforms are shown in Section 1.

SN54LS638, SN54LS639, SN74LS638, SN74LS639 Octal bus transceivers

TYPICAL CHARACTERISTICS

TEXAS VI INSTRUMENTS

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any semiconductor product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

TI warrants performance of its semiconductor products and related software to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

Certain applications using semiconductor products may involve potential risks of death, personal injury, or severe property or environmental damage ("Critical Applications").

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS.

Inclusion of TI products in such applications is understood to be fully at the risk of the customer. Use of TI products in such applications requires the written approval of an appropriate TI officer. Questions concerning potential risk applications should be directed to TI through a local SC sales office.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards should be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or services described herein. Nor does TI warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used.

Copyright © 1996, Texas Instruments Incorporated