SDLS183 D2545, JULY 1979-REVISED MARCH 1988

SN54LS604, SN54LS606, SN54LS607 . . . JD PACKAGE

SN74LS604, SN74LS606, SN74LS607 . . . JD OR N PACKAGE

(TIM99604, TIM99606, TIM99607)

- Choice of Outputs: Three State ('LS604, 'LS606) Open-Collector ('LS607)
- 16 D-Type Registers, One for Each Data Input
- Multiplexer Selects Stored Data from Either A Bus or B Bus
- Application Oriented: Maximum Speed ('LS604) Glitch-Free Operation ('LS606, 'LS607)

description

The 'LS604, 'LS606, and 'LS607 multiplexed latches are ideal for storing data from two input buses, A and B, and providing the output bus with stored data from either the A or B register.

The clock loads data on the positive-going (low-level to high-level) transition. The clock pin also controls the active and high-impedance states of the outputs. When the clock pin is low, the outputs are in the highimpedance or off state. When the clock pin is high, the outputs are enabled.

The 'LS604 is optimized for high-speed operation. The 'LS606 and 'LS607 are especially designed to eliminate decoding voltage spikes.

These functions are ideal for interface from a 16-bit microprocessor to a 64K RAM board. The row and column addresses can be loaded as one word from the microprocessor and then multiplexed sequentially to the RAM during the time that RAS and CAS are active.

((TOP VIEW)											
CLK	1											
A/B	2	27 🗖 A5										
A1[3	26 🗆 85										
B1[4	25 🗌 A6										
A2[_	5	24Дв6										
в2[6	23 🗍 A7										
A3	7	22 🗍 B7										
83	8	21 🗍 🗛										
A4[_	9	20 🗌 B8										
B4[10	19∐Y8										
Y4[_	11	18 🗌 Y7										
Y3[]	12	17∐Y6										
Y2[13	16 🗌 Y5										
GND	14	15∐Y1										

SN54LS604, SN54LS606, SN54LS607 . . . FK PACKAGE (TOP VIEW)

The SN54LS604, SN54LS606, and SN54LS607 are characterized for operation over the full military temperature range of -55 °C to 125 °C; the SN74LS604, SN74LS606, and SN74LS607 are characterized for operation from 0 °C to 70 °C.

FUNCTION TABLE

		INPUTS		OUTPUTS
A1-A8	B1-88	SELECT A/B	CLOCK	Y1-Y8
A data	B data	L	t	B data
A data	B data	н	t	A data
х	х	х	L	Z or Off
х	x	L	н	B register stored data
x	x	н	н	A register stored data

X = irrelevant

ievant

Z = high-impedance state

mgr. map comov atolic

Off = H if pull-up resistor is connected to open-collector output

1 = transistion from low to high level

PRODUCTION DATA documents contain information current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.

SN54LS604, SN54LS606, SN54LS607, SN74LS604, SN74LS606, SN74LS607 Octal 2-Input multiplexed latches

logic symbols[†]

[†]These symbols are in accordance with ANSI/IEEE Std. 91-1984 and IEC Publication 617-12. Pin numbers shown are for JD and N packages.

SN54LS604, SN54LS606, SN54LS607, SN74LS604, SN74LS606, SN74LS607 Octal 2-Input Multiplexed Latches

logic diagram (positive logic)

۰.

SN54LS604, SN54LS606, SN74LS604, SN74LS606 OCTAL 2-INPUT MULTIPLEXED LATCHES WITH 3-STATE OUTPUTS

recommended operating conditions

		SN54LS604 SN54LS606			SN74LS604 SN74LS606		
	MIN	NOM	MAX	MIN	NOM	MAX	
Supply voltage, V _{CC} (see Note 1)	4.5	5	5.5	4.75	5	5.25	V
High-level output current, IOH			-1			-2.6	MA
Low-level output current, IOL			12			24	mΑ
Width of clock puise, t _W	20			20			ns
Setup time, t _{su}	201			201			ns
Hold time, th	01			10			ns
Operating free-air temperature, TA	~-55		125	0		70	°C

NOTE 1: Voltage values are with respect to network ground terminal.

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

	PARAMETER	TEST CONDITIONS [†]			SN54LS604 SN54LS606			5	UNIT		
					MIN	ΤΥΡ‡	MAX	MIN	TYP	MAX	
VIH	High-level input voltage				2			2			V
VIL.	Low-level input voltage						0.7			0.8	<u> </u>
Viк	Input clamp voltage	V _{CC} = MIN,	l <u>j = −</u> 18 mA				-1.5			-1.5	V
∨он	High-level output voltage	V _{CC} = MIN, V _{IL} = V _{IL} max,	V _{1H} = 2 V, I _{OH} = MAX		2.4	3.1		2.4	3.1		v
V.	Low-level output voltage	V _{CC} = MIN,	V _{CC} = MIN, V _{IH} = 2 V, V _{IL} = V _{IL} max,			0.25	0.4		0.25	0.4	l v
VOL	Low-level output voltage	ViL ∸ ViL max,						0.35	0,5	Ť	
1	Off-state output current,	V _{CC} = MAX,	VIH = 2 V,				20			20	μА
^I OZH	high-level voltage applied	V _{IL} = V _{IL} max,	Vo = 2.7 V				20	_		20	20
IOZL	Off-state output current,	V _{CC} = MAX,	V _{IH} ≠ 2 V,				-20			20	μA
-02L	low-level voltage applied	VIL = VIL max,	V _O = 0.4				- 20				
4	Input current at	Vcc = MAX,	V1 = 7 V	A, B			0.1			0.1	mA
.,	maximum input voltage		-1	CLK, SELECT			0.1			0.1	
Чн	High-level input current	Vcc = MAX,	V _I = 2.7 V	A, B			20			20	μА
.11		*UU	• 2.7 •	CLK, SELECT			20			20	
hL.	Low-level input current	VCC = MAX,	V1 = 0.4 V	A, B	Ļ		-0.4			0.4	mA
<u>.,rr</u>			•1 •1•	CLK, SELECT	<u> </u>		_0.2			0.2	
los	Short-circuit output current§	V _{CC} = MAX			-30		-130	_30		-130	mΑ
ICC	Supply current	VCC = MAX,	See Note 2			55	70		55	70	mA

[†] For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

 \ddagger All typical values are at V_{CC} = 5 V, T_A = 25°C.

 $rac{3}{3}$ Note more than one output should be shorted at a time, and duration of the short-circuit should not exceed one second.

NOTE 2: ICC is tested with all inputs grounded and all outputs open.

switching characteristics, VCC = 5 V, TA = 25°C

PARAMETER	FROM	TEST CONDITIONS			'LS604			'LS606		
	(INPUT)	reore	MIN	TYP	MAX	MIN	TYP	MAX	UNIT	
tPLH	Select A/B				15	- 25		36	50	
^t PHL	(Data: A = H, B = L)				23	35		16	30	ns
tPLH .	Select A/B	CL ≈ 45 pF, See Note 3	R _L = 667 Ω,		31	45		22	35	ns
tPHL	(Data: A ≠ L, B = H)				19	30		22	35	
^t PZH	Clock				19	30		27	40	пз
tPZL .	GIOCK			28	40		35	50	1.15	
TPHZ	Clock	CL = 5 pF,	R _L = 667 Ω,		20	30		20	30	ns
^t PLZ	UIUUK	See Note 3			15	25		15	25	115

 tpLH
 ≡
 propagation delay time, low-to-high-level output

 tpHL
 ≡
 propagation delay time, low-to-high-level output

 tpZH
 ≡
 output enable time to high level

 tpZL
 ≡
 output enable time to low level

tPHZ 🛛 🛱 output disable time from high level

= output disable time from low level ^tPLZ

NOTE 3: Load circuits and voltage waveforms are shown in Section 1.

SN54LS607, SN74LS607 OCTAL 2-INPUT MULTIPLEXED LATCHES WITH OPEN-COLLECTOR OUTPUTS

recommended operating conditions

		SN54LS607		SN74LS607			UNIT
	MIN	NOM	MAX	MIN	NOM	MAX	l
Supply voltage, V _{CC} (see Note 1)	4.5	5	5.5	4.75	5	5.25	v
High-level output voltage, VOH			6.5			5.5	V
Low-level output current, IOL			12			24	ΜA
Width of clock pulse, tw	20			20			пѕ
Setup time, t _{su}	201			20↑			пs
Hold time, th	10			†Û			пs
Operating free-air temperature, T _A	-55		125	0		70	°C

NOTE 1: Voltage values are with respect to network ground terminal.

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

	PARAMETER	TEST CONDITIONS [†]			SN54L\$607			SN74LS607			
					MIN TYPT		MAX	ΜΙΝ ΤΥΡ‡		MAX	
VIH	High-level input voltage				2	_		2			
VIL	Low-level input voltage						0.7			0.8	V .
VIK	Input clamp voltage	Vcc = MIN,	II = -18 mA				-1.5			-1.5	V
юн	High-level output current	V _{CC} = MIN, V _{IL} = V _{IL} max,	V _{IH} = 2 V, V _{OH} = 5.5 V				250			250	μA
Vol	Low-level output voltage	V _{CC} = MIN, VIL = VIL max	V _{1H} = 2 V,	I _{OL} = 12 mA		0.25	0.4		0.25 0.35	0.4 0.5	v
ij	Input current at maximum input voltage	V _{CC} = MAX,	V] = 7 V	A, B CLK, SELECT			0.1			0.1	mA
¹ ІН	High-level input current	V _{CC} = MAX,	V ₁ = 2.7 V	А, В			20			20	μA
	J			CLK, SELECT	1		20			20 0.4	
١L	Low-level input current	V _{CC} = MAX,	V ₁ = 0.4 V	CLK, SELECT	•		-0.2			0 <u>.2</u>	mA
lcc	Supply current	V _{CC} = MAX,	See Note 2			40	60	[40	60	mA

[†]For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

[‡]All typical values are at V_{CC} = 5 V, T_A = 25°C.

NOTE 2: ICC is tested with all inputs grounded and all outputs open.

switching characteristics, V_{CC} = 5 V, T_A = $25 \,^{\circ}$ C

	FROM			UNIT		
PARAMETER	(INPUT)	TEST CONDITIONS	MIN	TYP	MAX	UNIT
tPLH	Select A/B			51	70	ns
tPHL	(Data: A = H, B = L)			21	30	113
^t PLH	Select A/B	$C_L = 45 \text{ pF}, R_L = 667 \Omega,$ See Note 3		28	40	ns
tPHL	(Data: A = L, B = H)			28	40	115
^t PLH				30	45	
^t PHL	- Clock			32	45	ns

NOTE 3: Load circuits and voltage waveforms are shown in Section 1.

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any semiconductor product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

TI warrants performance of its semiconductor products and related software to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

Certain applications using semiconductor products may involve potential risks of death, personal injury, or severe property or environmental damage ("Critical Applications").

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS.

Inclusion of TI products in such applications is understood to be fully at the risk of the customer. Use of TI products in such applications requires the written approval of an appropriate TI officer. Questions concerning potential risk applications should be directed to TI through a local SC sales office.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards should be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or services described herein. Nor does TI warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used.

Copyright © 1996, Texas Instruments Incorporated