SN54LS540, SN54LS541, SN74LS540, SN74LS541 OCTAL BUFFERS AND LINE DRIVERS WITH 3-STATE OUTPUTS

- 3-State Outputs Drive Bus Lines or Buffer Memory Address Registers
- P-N-P Inputs Reduce D-C Loading
- Hysteresis at Inputs Improves Noise Margins
- Data Flow-thru Pinout (All Inputs on Opposite Side from Outputs)

description

These octal buffers and line drivers are designed to have the performance of the popular SN54LS240/ SN74LS240 series and, at the same time, offer a pinout having the inputs and outputs on opposite sides of the package. This arrangement greatly enhances printed circuit board layout.

The three-state control gate is a 2-input NOR such that if either $\overline{G1}$ or $\overline{G2}$ are high, all eight outputs are in the high-impedance state.

The 'LS540 offers inverting data and the 'LS541 offers true data at the outputs.

The SN54LS540 and SN54LS541 are characterized for operation over the full military temperature range of -55° C to 125° C. The SN74LS540 and SN74LS541 are characterized for operation from 0°C to 70°C.

TYPE	RATED ¹ OL (SINK	RATED ^I OH (SOURCE	TYPICAL DISSIP/ (ENAB	ATION
	CURRENT)	CURRENT)	'L\$540	' LS5 41
SN54LS'	12 mA	— 12 mA	92.5 mW	120 mW
\$N74LS'	24 mA	— 15 mA	92.5 mW	120 mW

schematics of inputs and outputs

PRODUCTION DATA documents contain information current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not SDLS180 D2546, AUGUST 1979-REVISED MARCH 1988

SN54LS540. SN54LS541 ... J OR W PACKAGE SN74LS540, SN74LS541 ... DW OR N PACKAGE (TOP VIEW)

- <u>G</u> 1C	1	U	20		Vcc
A1 🛙	2		19	口	G2
A2 [3		18	Þ	Y1
AЗC	4		17	D	Y2
A4C	5		16	D	Y3
A5	6		15	D	Y4
A6	7		14	Б	Y5
A7C	8		13		Y6
ABC	9		12	h	Y7
GND	10	•	11	Б	Y8

SN54LS540, SN54LS541 . . . FK PACKAGE (TOP VIEW)

SN54LS540, SN54LS541, SN74LS540, SN74LS541 OCTAL BUFFERS AND LINE DRIVERS WITH 3-STATE OUTPUTS

logic symbols[†]

[†] These symbols are in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

logic diagram (positive logic)

'L8541 G1(1) <u>6</u>2(19) <u>(18)</u> Y1 A1(2) A2 (3) <u>(17)</u> Y2 (<u>16)</u> Y3 A3 (4) (15) Y4 A4 (5) A5 (6) (14) Y5 A6^[7] (13) Y6 A7(8) (12) Y7 A8⁽⁹⁾ (11) Y8

(18) V1

(17) YZ

(16) Y3

(15) ¥4

(14) Y5 (13) Y6

(12) Y7

(11) Y8

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Operating free-air temperature range:	SN54LS540, SN54LS541	
	SN74LS540, SN74LS541	
Storage temperature range	· · · · · · · · · · · · · · · · · · ·	-65° C to 150° C

NOTE 1: Voltage values are with respect to the network ground terminal.

SN54LS540, SN54LS541, SN74LS540, SN74LS541 OCTAL BUFFERS AND LINE DRIVERS WITH 3-STATE OUTPUTS

recommended operating conditions

PARAMETER		SN54LS'				SN74LS'		
FARAMETER	MIN	NOM	MAX	MIN	NOM	MAX	UNIT	
Supply voltage, V _{CC} (see Note 1)	4.5	5	5.5	4.75	5	5.25	V	
High-level output current, IOH			-12			- 15	mА	
Low-level output current, IOL			12			24	mA	
Operating free-air temperature, TA	-55		125	0		70	°C	

NOTE 1: Voltage values are with respect to network ground terminal.

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

	PARAMETER		TEET COL	CONDITIONET		SN54LS'			SN74LS'		
		TEST CONDITIONS [†]		MIN	TYP [‡]	MAX	MIN	TYP‡	MAX		
VIH	High-level input vo	Itage						2			V
VIL	Low-level input vol	Itage					0.6			0.6	V
Viк	Input clamp voltag	e – – – –	$V_{CC} = MIN,$	li = -18 mA			-1.5		_	-1.5	V
	Hysteresis (VT + -	- V _T _)	$V_{CC} = MIN$		0.2	0.4		0.2	0.4		V
Val			$V_{CC} = MIN,$ $V_{1L} = V_{1L} max,$	V _{IH} = 2 V, IOH = -3 mA	2.4	3.4		2.4	3.4		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
∨он	High-level output voltage			$V_{IH} = 2V$,	2			2			V
VOL	Low-level output voltage		$V_{CC} = MIN,$ $V_{IH} = 2 V,$	$I_{OL} = 12 \text{ mA}$		0.25	0.4		0.25	0.4	v
			$V_{IL} = V_{IL} \max$	loL = 24 mA					0.35	0.5	¥
оzн	Off-state output cu high-level voltage a		V _{CC} ≈ MAX, V _{IH} = 2 V,	1 1			20			20	
IOZL	Off-state output cu low-level voltage a		$V_{ L} = V_{ L} max$	V ₀ = 0.4 V			- 20			- 20	μΑ
ų	Input current at maximum input voltage		V _{CC} = MAX,	V _I = 7 V			0.1			0.1	mA
Чн	High-level input cu	rrent, any input	VCC = MAX,	VI = 2.7 V			20			20	μA
Ιμ	Low-level input cur	rent	VCC = MAX.	VI = 0.4 V	_		-0.2			-0.2	mA
los	Short-circuit output	t current [§]	VCC = MAX		-40		- 225	- 40		- 225	mA
	Outputs high Supply current Outputs low All outputs disabled	Outer high		'LS540		13	25		13	25	
			'LS541		18	32		18	32		
امم		Outpute less	V _{CC} ≈ MAX,	'LS540		24	45		24	45	
ICC		Outputs low Outputs open	'LS541		30	52		30	52	mA	
		All outputs		'LS540		30	52		30	52	J
		disabled		'LS541	_	32	55		32	55	

[†]For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions. [‡]All typical values are at $V_{CC} = 5 V$, $T_A = 25 °C$.

[§]Not more than one output should be shorted at a time, and duration of the short-circuit should not exceed one second.

TEXAS VI INSTRUMENTS POST OFFICE BOX 655012 • DALLAS. TEXAS 75265

SN54LS54D, SN54LS541, SN74LS54O, SN74LS541 OCTAL BUFFERS AND LINE DRIVERS WITH 3-STATE OUTPUTS

switching characteristics, $V_{CC} = 5 V$, $T_A = 25 °C$

PARAMETER		TEST CONDITIONS		'LS540			'LS541			
				MIN TYP		MAX	MIN	ТҮР	MAX	UNIT
ŧ₽LH	Propagation delay time, low-to-high-level output				9	15		9	15	лз
^t PHL	Propagation delay time, high-to-low-level output	C _L = 45 pF, F See Note 2	KL = 667 Ω,		9	15		10	18	ns
tPZL	Output enable time to low level				25	38		25	38	ns
tPZH	Output enable time to high level				15	25		20	32	ns
^t PLZ	Output disable time from low level	CL = 5 pF, A	L = 667 Ω,		10	18		10	18	ns
^t PHZ	Output disable time from high level	See Note 2			15	25		18	29	ns

NOTE 2: Load circuits and voltage waveforms are shown in Section 1.

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any semiconductor product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

TI warrants performance of its semiconductor products and related software to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

Certain applications using semiconductor products may involve potential risks of death, personal injury, or severe property or environmental damage ("Critical Applications").

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS.

Inclusion of TI products in such applications is understood to be fully at the risk of the customer. Use of TI products in such applications requires the written approval of an appropriate TI officer. Questions concerning potential risk applications should be directed to TI through a local SC sales office.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards should be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or services described herein. Nor does TI warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used.

Copyright © 1996, Texas Instruments Incorporated