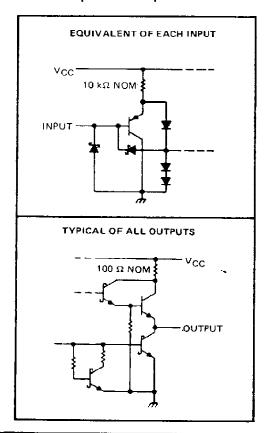
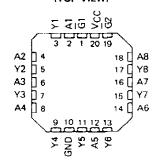
D2631, JANUARY 1981 - REVISED MARCH 1988


- Mechanically and Functionally Interchangeable With DM71/81LS95 thru DM71/81LS98
- P-N-P Inputs Reduce Bus Loading
- 3-State Outputs Rated at IQL of 12 mA and 24 mA for 54LS and 74LS, Respectively

| DEVICE | DATA PATH |
|--------|-----------|
| 'LS465 | True      |
| 'LS466 | Inverting |
| 'LS467 | True      |
| 'LS468 | Inverting |

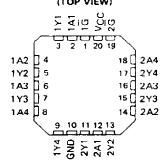
#### description


These octal buffers utilize the latest low-power Schottky technology. The 'LS465 and 'LS466 have a two-input active-low AND enable gate controlling all eight data buffers. The 'LS467 and 'LS468 have two separate active-low enable inputs each controlling four data buffers. In either case, a high level on any  $\overline{G}$  places the affected outputs at high impedance.

### schematics of inputs and outputs



# SN54LS465 AND SN54LS466 . . . J PACKAGE SN74LS465 AND SN74LS466 . . . DW OR N PACKAGE (TOP VIEW) G1 1 20 VCC A1 2 19 G2 Y1 3 18 A8 A2 4 17 Y8 Y2 5 16 A7

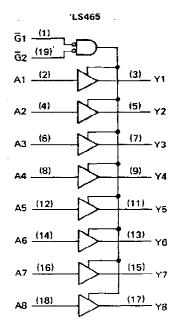

# SN54LS465 AND SN54LS466 . . . FK PACKAGE (TOP VIEW)

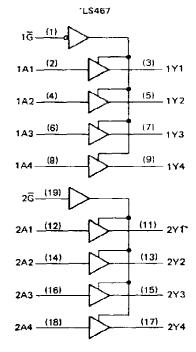


#### \$N54LS467 AND \$N54LS468 . . . J PACKAGE \$N74LS467 AND \$N74LS468 . . . DW OR N PACKAGE (TOP VIEW)

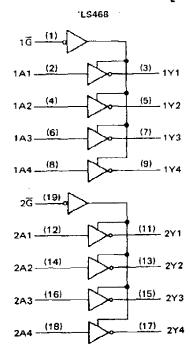
16 1 020 VCC 19 **5** 2 G 1A1 🛮 2 18 7 2A4 171 🗂 3 1A2 🛮 4 17 2Y4 1Y2 🗍 5 16 2A3 1A3 []6 1Y3 []7 15 2Y3 14 2A2 1A4 🗍 B 13 2Y2 1Y4 🗍 9 12 T 2AT GND [] 10 11 🛮 2Y1

# SN54LS467 AND SN54LS468 . . . FK PACKAGE (TOP VIEW)





PRODUCTION DATA decrements contain information current as of publication data. Products conform to specifications per the terms of Texas instruments standard worrsety. Production processing does not necessarily include testing of all personeters.




# SN54LS465 THRU SN54LS468, SN74LS465 THRU SN74LS468 OCTAL BUFFERS WITH 3-STATE OUTPUTS

## logic diagrams (positive logic)





'LS466 G1 (1) G2 (19) A1 - (2) (3)\_Y1 (5) Y2 A2-(4) (7) Y3 (9) Y4 (11) Y5 A5 (12) (13) Y6 A6-(14) (15) Y7 A7-(16) A8 (18) (17)\_ Y8



Pin numbers shown are for DW, J, and N packages.

## SN54LS465 THRU SN54LS468, SN74LS465 THRU SN74LS468 OCTAL BUFFERS WITH 3-STATE OUTPUTS

2A3 (16)

2A4 (18)

(15) 2Y3

(17) 2Y4

#### logic symbols† 'LS465 **'LS466** G1 (1) G1 (1) ĖN G2 (19) N G2 (19) A1-(2) (3) Y1 A1 (Z) (3) Y1 A2 (4) (5) Y2 A2 (4) (51 Y2 A3 (6) (7)\_Y3 A3 (6) (7) Y3 A4 (8) (9<u>)</u> Y4 A4 (8) (9)\_Y4 A5 (12) A5 (12) (11) ys (11) Y5 A6 (14) (13) Y6 A6 (14) (13) Y6 A7 (16) (15) Y7 (151 Y7 A7 (16) A8 (18) (17) YS A8 (18) (17) Y8 'LS467 'LS468 1G (1) 1G (1) EN 1A1 (2) (31 1Y 1 (3) 1Y1 1A2 (41 1A1 (5) 1Y2 1A2 [4] (5) 172 1A3 (6) (7) 1Y3 1A3 (6) (7) 173 1A4 (B) (9) 1Y4 1A4 (8) (9) 1Y4 2G (19) EN 2Ğ (19) 2A1 (12) (11) ZY 1 2A1 (12) (11) 2Y1 2A2 (14) (13) 2Y2 2A2 (14) (131 2Y2 2A3 (16) (15) 2Y3

(17) 2Y4

# absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

| Supply voltage, VCC (see Note 1)                               | . 7 V   |
|----------------------------------------------------------------|---------|
| Input voltage                                                  | 7 V     |
| Off-state output voltage                                       | 5.5 V   |
| Operating free-air temperature range: SN54LS465 thru SN54LS468 | 125°C   |
| SN74LS465 thru SN74LS468                                       | to 70°C |
| Storage temperature range                                      | 150°C   |

NOTE 1: Voltage values are with respect to the network ground terminal.

# recommended operating conditions

2A4 (18)

| •                                  | ·   | SN54LS' |     |      | SN74LS' |      |      |
|------------------------------------|-----|---------|-----|------|---------|------|------|
|                                    | MIN | NOM     | MAX | MIN  | NOM     | MAX  | UNIT |
| Supply voltage, V <sub>CC</sub>    | 4.5 | 5       | 5.5 | 4,75 | 5       | 5.25 | V    |
| High-level output current, IOH     |     |         | 1   |      |         | -2.6 | mA   |
| Low-level output current, IQL      |     |         | 12  |      |         | 24   | mA   |
| Operating free-air temperature, TA | -55 |         | 125 | 0    |         | 70   | °c   |

<sup>&</sup>lt;sup>†</sup>These symbols are in accordance with ANSI/IEEE Std. 91-1984 and IEC Publication 617-12. Pin numbers shown are for DW, J, and N packages.

# SN54LS465 THRU SN54LS468, SN74LS465 THRU SN74LS468 OCTAL BUFFERS WITH 3-STATE OUTPUTS

## electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

| PARAMETER                                |                                  | TEST CONDITIONS <sup>†</sup>                  |                                                                                      | SN54LS'                                |          |       | SN74LS'  |          |       | UNIT |        |  |
|------------------------------------------|----------------------------------|-----------------------------------------------|--------------------------------------------------------------------------------------|----------------------------------------|----------|-------|----------|----------|-------|------|--------|--|
|                                          | PARAMETE                         | :H                                            | TEST CONDITIONS                                                                      |                                        | MIN      | TYP\$ | MAX      | MIN      | TYP\$ | MAX  | UNIT   |  |
| VIH                                      | High-level input v               | oltage                                        | ,                                                                                    |                                        | 2        |       |          | 2        |       |      | V      |  |
| VIL                                      | Low-level input ve               | itage                                         | ,                                                                                    |                                        | 1        |       | 0.7      |          |       | 0.8  | V      |  |
| VIK                                      | Input clamp volta                | ge                                            | V <sub>CC</sub> = MIN, I <sub>I</sub> = -18 mA                                       |                                        |          |       | -1,5     |          | -     | -1.5 | V      |  |
| 11                                       | High-level output                | uolzago                                       | VCC = MIN, VIH = 2 V.                                                                | IOH = -1 mA                            | 2.4      | 3.3   |          | T        |       |      | V      |  |
| νон                                      | Might-level Output               | YOTTAYE                                       | VIL = VIL max                                                                        | I <sub>OH</sub> = -2.6 mA              | 2.6 mA   |       |          | 2.4      | 3.1   |      | 1 *    |  |
| V                                        | Low-level output                 | voltana                                       | VCC = MIN, VIH = 2 V.                                                                | IOL = 12 mA                            | 1        | 0.25  | 0.4      |          | 0.25  | 0.4  | V      |  |
| VOL                                      | Cow-level output                 | vortage                                       | V <sub>IL</sub> = V <sub>IL</sub> max                                                | IOL = 24 mA                            |          |       |          |          | 0.35  | 0,5  | L.     |  |
| 1                                        | Off-state output o               | urrent,                                       | V <sub>CC</sub> = MAX, V <sub>IH</sub> = 2 V,                                        | V <sub>IL</sub> = V <sub>IL</sub> max, | 1        |       | 20       |          |       | 20   | μА     |  |
| <sup>1</sup> OZH                         | DZH high-level voltage applied   |                                               | V <sub>Q</sub> = 2.7 V                                                               |                                        |          |       | 20       |          |       | 20   | μΛ     |  |
|                                          | Off-state output current,        |                                               | V <sub>CC</sub> = MAX, V <sub>IH</sub> = 2 V, V <sub>IL</sub> = V <sub>IL</sub> max, |                                        | ĺ        |       | -20      |          |       | -20  | μΑ     |  |
| 10ZL                                     | OZL low-level voltage applied    |                                               | V <sub>O</sub> ≈ 0.4 V                                                               |                                        |          |       | -20      |          |       | -20  | , M.   |  |
| Input current at maximum                 |                                  | V <sub>CC</sub> = MAX, V <sub>I</sub> = 7 V   |                                                                                      |                                        |          | 0.1   |          |          | 0.1   | mA   |        |  |
| '1                                       | input voltage                    |                                               | VCC = MAX, V  = 7 V                                                                  |                                        |          |       |          |          |       |      |        |  |
| I <sub>IH</sub> High-level input current |                                  | $V_{CC} \approx MAX, V_1 = 2.7 V$             |                                                                                      | <u> </u>                               |          | 20    |          |          | 20    | μА   |        |  |
| IL Low-level input current               |                                  | V <sub>CC</sub> = MAX, V <sub>I</sub> = 0.4 V |                                                                                      |                                        |          | -0.2  | <u> </u> |          | -0.2  | mA   |        |  |
| los                                      | S Short-circuit output current § |                                               | V <sub>CC</sub> - MAX, V <sub>O</sub> - 0 V                                          |                                        | -30      |       | -130     | -30      |       | -130 | mΑ     |  |
|                                          | Supply curtent                   | 'LS465, 'LS467  pply current 'LS466, 'LS468   | ,                                                                                    | Outputs low                            | ┧        | 19    | 32       | <u> </u> | 19    | 32   | 1      |  |
| IÇC S                                    |                                  |                                               | V <sub>CC</sub> = MAX                                                                | Outputs high                           | <u> </u> | 13    | 22       |          | 13    | 22   | ]      |  |
|                                          |                                  |                                               |                                                                                      | Output Hi-Z                            |          | 22    | 37       |          | 22    | 37   | mA     |  |
|                                          |                                  |                                               |                                                                                      | Outputs low                            |          | 14    | 23       | <u>L</u> | 14    | 23   | ] '''' |  |
|                                          |                                  |                                               |                                                                                      | Outputs high                           |          | 6     | 10       |          | 6     | 10   |        |  |
|                                          |                                  |                                               |                                                                                      | Outputs Hi∗Z                           |          | 17    | 28       |          | 17    | 28   | {      |  |

 $<sup>^\</sup>dagger$  For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

## switching characteristics, VCC = 5 V, $TA = 25^{\circ}C$ , see note 2

| PARAMETER        | FROM             | TO              | TEAT 001101710110                              | 'LS465, 'LS467 |     |     | 'L\$466, 'L\$468 |     |      |    |
|------------------|------------------|-----------------|------------------------------------------------|----------------|-----|-----|------------------|-----|------|----|
|                  | (INPUT) (OUTPUT) | TEST CONDITIONS | MIN                                            | TYP            | MAX | MIN | TYP              | MAX | UNIT |    |
| tPLH             | Ai               | Yi              | R <sub>L</sub> - 667 Ω, C <sub>L</sub> = 45 pF |                | 9   | 15  |                  | 7   | 12   | nş |
| <sup>†</sup> PHL | Ai               | Yi              |                                                |                | 12  | 18  |                  | 9   | 15   | ns |
| †PZH             | Ğι               | Y               |                                                |                | 25  | 40  |                  | 25  | 40   | ns |
| †PZL             | ធិ រ             | Y               |                                                |                | 29  | 45  | 1                | 29  | 45   | ns |
| <sup>†</sup> PHZ | Ğt               | Y               | Rι=667Ω, Cι=5pF                                |                | 25  | 40  |                  | 25  | 40   | ns |
| <sup>†</sup> PLZ | G †              | Y               |                                                |                | 30  | 45  |                  | 30  | 45   | ns |

NOTE 2: Load circuits and voltage waveforms are shown in Section 1.

<sup>‡</sup> All typical values are at  $V_{CC}$  = 5 V,  $T_A$  = 25°C. § Not more than one output should be shorted at a time, and duration of the short-circuit should not exceed one second.

#### **IMPORTANT NOTICE**

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any semiconductor product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

TI warrants performance of its semiconductor products and related software to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

Certain applications using semiconductor products may involve potential risks of death, personal injury, or severe property or environmental damage ("Critical Applications").

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS.

Inclusion of TI products in such applications is understood to be fully at the risk of the customer. Use of TI products in such applications requires the written approval of an appropriate TI officer. Questions concerning potential risk applications should be directed to TI through a local SC sales office.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards should be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or services described herein. Nor does TI warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used.

Copyright © 1996, Texas Instruments Incorporated