SN54LS381A, SN54S381, SN74LS381A, SN54LS382A, SN74LS382A, SN74S381 ARITHMETIC LOGIC UNITS/FUNCTION GENERATORS

PIN DESIGNATIONS

DESIGNATION	PIN NOS.	FUNCTION				
A3, A2, A1, A0	17, 19, 1, 3	WORD A INPUTS				
B3, B2, B1, B0	16, 18, 2, 4	WORD B INPUTS				
	3.0.5	FUNCTION SELECT				
\$2, \$1, \$0	7, 6, 5	INPUTS				
		CARRY INPUT FOR				
	15	ADDITION, INVERTED				
Cn	15	CARRY INPUT FOR				
		SUBTRACTION				
F3, F2, F1, F0	12, 11, 9, 8	FUNCTION OUTPUTS				
ァ('LS381A	14	ACTIVE-LOW CARRY				
'\$381 ONLY1	14	PROPAGATE OUTPUT				
G ('LS381A	13	ACTIVE-LOW CARRY				
(\$381 ONLY)	13	GENERATE OUTPUT				
('LS382A	14	RIPPLE-CARRY				
Cn + 4 ONLY)	14	OUTPUT				
OVR (LS382A	13	OVERFLOW				
ONLY)		OUTPUT				
Vcc	20	SUPPLY VOLTAGE				
GND	10	GROUND				

- Fully Parallel 4-Bit ALUs in 20-Pin Package for 0.300-Inch Row Spacing
- Ideally Suited for High-Density Economical Processors
- 'LS381A and 'S381 Feature G and P Outputs for Look-Ahead Carry Cascading
- 'LS382A Features Ripple Carry (Cn + 4) and Overflow (OVR) Outputs
- Arithmetic and Logic Operations Selected Specifically to Simplify System Implementation:
 - A Minus B B Minus A A Plus B
 - and Five Other Functions

SDLS168 D2430, JAN	IUARY 1981 - REVISED MARCH 1988
SN54LS381A, SN54S381 J OR W PACKAGE SN74LS381A, SN74S381 DW OR N PACKAGE	SN54LS381A, SN54S381 FK PACKAGE
(TOP VIEW)	(TOP VIEW)
A1 1 20 VCC B1 2 19 A2 A0 3 18 B2 B0 4 17 A3 S0 5 16 B3 S1 6 15 Cn S2 7 14 P F0 8 13 G F1 9 12 F3 GND 10 11 F2	$\begin{array}{c} 0 & 1 & 1 & 2 \\ 0 & 1 & 1 & 2 & 1 \\ 0 & 1 & 1 & 2 & 1 \\ 0 & 1 & 1 & 2 & 1 \\ 0 & 1 & 1 & 2 & 1 \\ 0 & 1 & 1 & 2 & 1 \\ 0 & 1 & 1 & 2 & 1 \\ 0 & 1 & 1 & 2 & 1 \\ 0 & 1 & 1 & 2 & 1 \\ 0 & 1 & 1 & 2 & 1 \\ 0 & 1 & 1 & 2 & 1 \\ 0 & 0 & 1 & 1 & 2 & 1 \\ 0 & 0 & 1 & 1 & 2 & 1 \\ 0 & 0 & 1 & 1 & 2 & 1 \\ 0 & 0 & 1 & 1 & 2 & 1 \\ 0 & 0 & 1 & 1 & 2 & 1 \\ 0 & 0 & 0 & 1 & 1 & 2 & 1 \\ 0 & 0 & 0 & 1 & 1 & 2 & 1 \\ 0 & 0 & 0 & 0 & 1 & 1 & 2 \\ 0 & 0 & 0 & 1 & 1 & 2 & 1 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0$
SN54LS382A	
J OR W PACKAGE SN74LS382A	SN54LS382A FK PACKAGE
DW OR N PACKAGE	(TOP VIEW)
(TOP VIEW)	• • •
A1 $\begin{bmatrix} 1 \\ 20 \end{bmatrix}$ V _{CC} B1 $\begin{bmatrix} 2 \\ 19 \end{bmatrix}$ A2 A0 $\begin{bmatrix} 3- \\ 18 \end{bmatrix}$ B2 B0 $\begin{bmatrix} 4 \\ 17 \end{bmatrix}$ A3 S0 $\begin{bmatrix} 5 \\ 16 \end{bmatrix}$ B3 S1 $\begin{bmatrix} 6 \\ 15 \end{bmatrix}$ C _n S2 $\begin{bmatrix} 7 \\ 14 \end{bmatrix}$ C _n + 4 F0 $\begin{bmatrix} 8 \\ 13 \end{bmatrix}$ OVR F1 $\begin{bmatrix} 9 \\ 12 \end{bmatrix}$ F3 GND $\begin{bmatrix} 10 \\ 11 \end{bmatrix}$ F2	$\begin{array}{c} \begin{array}{c} & & & & & & \\ \hline Q & & & & & \hline Q & & & & \\ \hline Q & & & & & \hline Q & & & & \\ \hline Q & & & & & & \\ \hline Q & & & & & & \\ \hline 3 & 2 & 1 & 20 & 19 \\ \hline 3 & 2 & 1 & 20 & 19 \\ \hline 3 & 2 & 1 & 20 & 19 \\ \hline 3 & 2 & 1 & 20 & 19 \\ \hline 3 & 2 & 1 & 20 & 19 \\ \hline 3 & 2 & 1 & 20 & 19 \\ \hline 5 & & & & & 18 \\ \hline S0 & 5 & & & & 17 \\ \hline S0 & 5 & & & & 16 \\ \hline S1 & & & & & 16 \\ \hline S2 & & & & & 17 \\ \hline 6 & & & & & 16 \\ \hline S2 & & & & & 17 \\ \hline 7 & & & & & 15 \\ \hline 6 & & & & & 16 \\ \hline 8 & & & & & 14 \\ \hline 7 & & & & & 12 & 13 \\ \hline 6 & & & & & & 14 \\ \hline 7 & & & & & & 12 & 13 \\ \hline 7 & & & & & & 12 & 13 \\ \hline 7 & & & & & & 12 & 13 \\ \hline 7 & & & & & & 12 & 13 \\ \hline 7 & & & & & & 12 & 13 \\ \hline 7 & & & & & & & 12 & 13 \\ \hline 7 & & & & & & & 12 & 13 \\ \hline 7 & & & & & & & 12 & 13 \\ \hline 7 & & & & & & & & 12 & 13 \\ \hline 7 & & & & & & & & & 12 & 13 \\ \hline 7 & & & & & & & & & & & 14 \\ \hline 7 & & & & & & & & & & & & & \\ \hline 7 & & & & & & & & & & & & & & \\ \hline 7 & & & & & & & & & & & & & & \\ \hline 7 & & & & & & & & & & & & & & \\ \hline 7 & & & & & & & & & & & & & & \\ \hline 7 & & & & & & & & & & & & & & \\ \hline 7 & & & & & & & & & & & & & \\ \hline 7 & & & & & & & & & & & & & & \\ \hline 7 & & & & & & & & & & & & & & \\ \hline 7 & & & & & & & & & & & & & & & \\ \hline 7 & & & & & & & & & & & & & \\ \hline 7 & & & & & & & & & & & & & & & \\ \hline 7 & & & & & & & & & & & & & & \\ \hline 7 & & & & & & & & & & & & & \\ \hline 7 & & & & & & & & & & & & & \\ \hline 7 & & & & & & & & & & & & & \\ \hline 7 & & & & & & & & & & & & & \\ \hline 7 & & & & & & & & & & & & & \\ \hline 7 & & & & & & & & & & & & & & \\ \hline 7 & & & & & & & & & & & & & & \\ \hline 7 & & & & & & & & & & & & & & & \\ \hline 7 & & & & & & & & & & & & & & & & & &$

FUNCTION TABLE

SEL	ECT	ION	ARITHMETIC/LOGIC
S2	\$1	SO	OPERATION
L	L	L	CLEAR
L	L	н	B MINUS A
L	н	L	A MINUS B
L	н	н	A PLUS B
н	L	L	А (+) В
н	L	н	A + B
н	н	L	AB
н	н	н	PRESET

H = high level, L = low level

description

The 'LS381A, 'S381 and 'LS382A are low-power Schottky and Schottky TTL arithmetic logic units (ALUs)/function generators that perform eight binary arithmetic/logic operations on two 4-bit words as shown in the function table. The exclusive-OR, AND, or OR function of the two Boolean variables is provided without the use of external circuitry. Also, the outputs can be cleared (low) or preset (high) as desired. The 'LS381A and 'S381 provide two cascade outputs (\overline{P} and \overline{G} for expansion utilizing SN54S182/SN74S182 look-ahead carry generators. The 'LS382 provides a C_{n+4}) output to ripple the carry to the C_n input of the next stage. The 'LS382A detects and indicates two's complement overflow condition via the OVR output. The overflow output is logically equivalent to $C_{n+3} \oplus C_{n+4}$. When the 'LS382A is cascaded to handle word lengths longer than four bits in length, only the most significant overflow (OVR) output is used.

The SN54' family is characterized for operation over the full military temperature range of -55 °C to 125 °C. The SN74' family is characterized for operation from 0 °C to 70 °C.

SN54LS381A, SN54S381, SN74LS381A, SN54LS382A, SN74LS382A, SN74S381 ARITHMETIC LOGIC UNITS/FUNCTIONS GENERATORS

function table

Certain differences exist in the \overline{G} , \overline{P} ('LS381A, 'S381) and OVR, C_{n+4} ('LS382A) function table compared with similar parts from other technologies and other vendors. No differences exist in the arithmetic modes (B minus A, A minus B, and A plus B), where these outputs perform valuable cascade functions. There are slight differences in the other modes (CLEAR, A + B, A \oplus B, AB, and PRESET), where these outputs are strictly "don't care".

This function table is a condensed version and assumes for A_n that A0, A1, A2, and A3 inputs all agree and for B_n that B0, B1, B2, and B3 inputs all agree. This table is intended to point out the response of these \overline{G} , \overline{P} ('LS381A, 'S381) and OVR, C_{n+4} ('LS382A) outputs in all modes of operation to facilitate incoming inspection.

ARITHMETIC/LOGIC				IPUTS			OUTPUTS			('LS381A, 'S381)		('LS:	82A)	
OPERATION	52	S1	50	Cn	An	8 _n	F3	F2	F1	FO	ō	P	OVR	Cn+4
CLEAR	L	Ĺ	L	X	X	х	L	L	L	Ļ	н	н	L	L
				L	L	L	н	н	Ħ	Н	н	L	L	L
				L	ļι	н	н	н	н	Ł	L	н	L L	н
				įι.	н	L	L	L	L	L	н	н	L	L
B MINUS A		L	н	L	н	н	н	н	н	H	н	Ł	L	L
2	-	-		н	6	L	L	L	L	L	н	L	Ł	н
				H H	L L	н	н	н	н	н	L	н	L	н
				+	н	L	٤	L	L	н	н	н	L	L
				<u>н</u>	<u>н</u>	н	L		L	L	н	<u> </u>	L .	<u> </u>
				L	L	L	н	н	H	н	н	L		L
					L	н		L	٤ 	L	н	н		L
					н	L H	н н	н н	н н	L H	ь н	н.		н
A MINUS B	L	н	L	। L म	1	Ľ		Ŀ			н	L L	لد د	L H
				Н		ч	L	L	L L	L H	н	н Н		Ľ
				н	- н	L	L H	н	н	н	L	н		н
				H H	н Н н	н	ι	L	L	Ľ	н	ί		н
				L.	L	L	L	<u> </u>	<u> </u>	. <u> </u>	н	н	L	L
	ιн					н	н	н	н	н	н	Ľ	- L	ī
				Ĺ	н	L	н	н	н	н	н	Ē	L	Ľ
				L.	н	н	н	н	н	ι	Ļ	н	- L	н
A PLUS B		н	н	L	Ļ	L	L	L	н	н	н	L	L	
				н	L.	н	L	L	L	L	н	L	L	н
				н	н	L	L	L	L	L	н	L	L	н
				н	н	н	н	н	н	н	L	н	L	н
				х	L	L	L,	L	L	L	н	н	L	L
				Ļ	ι	н	н	н	н	н	н	L	L	L
4 ⊕ в	н			н	L	н	н	Ħ	н	н	н	L	н	н
~ U B		L	L	L	н	L.	н	н	н	н	н	L	Ł	L
				н	н	L	н	н	н	н	н	L	н	н
				х	н	н	L	L	L	L	н	н	L	L
				×.	L	L	L	L	L	L	н	н	L	L
				L	L	н	н	н	н	н	н	L	L	L
				н	Ļ	н	н	н	н	н	н	L	н	н
А + В	н	L	I	7	н	L	н	н	н	н	н	<u> </u>	L	L
1				н	н	L	H	н	н	- H [н	- [н	н
				L	н	н	н	н	н	н	H	L	L	L
				н х	<u>н</u>	н	<u>н</u>	н	<u>н</u>	<u> </u>	H		<u>н</u>	н
}				x	L	с н	L	L	L		н н	н	L	L
A.9	н	н	L	x	L		L	Ļ	L	- L		н	L	L.
AB		п	<u>ر</u>	Ê.	н н	с н	L Н	с Н	L Н	L H	л л	н L	L	L
				с Н	н	н	н	н	н	н	н н	- L	L Н	L H
					- <u>-</u> -	×	н	н.	н	H I	н	Ŀ	– – – – – – – – – – – – – – – – – – –	
PRESET	н	н	н	-	^	^			n	" I	н	_	L	L

FUNCTION TABLE

SN54LS381A, SN54LS382A, SN74LS381A, SN74LS382A ARITHMETIC LOGIC UNITS/FUNCTION GENERATORS

Pin numbers shown are for DW, J, N, and W packages.

SN54S381, SN74S381 ARITHMETIC LOGIC UNITS/FUNCTION GENERATORS

logic diagram and schematics of inputs and outputs

Pin numbers shown are for DW, J, N, and W packages.

SN54LS381A, SN54S381, SN74LS381A, SN54LS382A, SN74LS382A, SN74S381 ARITHMETIC LOGIC UNITS/FUNCTION GENERATORS

logic symbols[†]

[†]These symbols are in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

Pin numbers shown are for DW, J, N, and W packages.

EQUIVALENT OF EACH INPUT V_{CC} R_{eq} NPUT $R_{eq} = 10 \text{ k}\Omega$ C_{n} ('LS381A): $R_{eq} = 2.5 \text{ k}\Omega$ All others: $R_{eq} = 2 \text{ k}\Omega$

'S381

SN54LS381A, SN54LS382A, SN74LS381A, SN74LS382A Arithmetic logic units/function generators

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, V _{CC} (See Note 1)	' V
nput voltage	' V -
Dperating free-air temperature range: SN54LS381A, SN54LS382A	٥C
SN74LS381A, SN74LS382A	°C
Storage temperature range	°C

NOTE 1: Voltage values are with respect to the network ground terminal.

recommended operating conditions

			L.	SN54LS'			SN74LS'			
-			MIN	NOM	MAX	MIN	NOM	MAX	UNIT	
v_{CC}	Supply voltage		4.5	5	5.5	4.75	5	5.25	v	
VIH	High-level input voltage		2	-		2			V	
VIL	Low-level input voltage				0.7			0.8	v	
юн	High-level output current				- 0.4			- 0.4	mА	
1		G output of 'LS381A			16			16	_	
IOL	Low-level output current	All other outputs			4			8	mA	
TA	Operating free-air temperature		- 55		125	0		- 70	°C	

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

	PARAMETER		EST CONDITIO	Net		SN54LS	1		SN74LS	5'	
	FARAMETER			182 ·	MIN	түр‡	MAX	MIN	түр‡	MAX	UNIT
ViK		V _{CC} = MIN,	l ₁ = 18 mA				- 1.5			- 1.5	V
v _{он}		V _{CC} = MIN, I _{OH} = - 0.4 m	V _{IH} = 2 V, A	VIL = MAX,	2.5	3.4		2.7	3.4		v
	G ('LS381A)	V _{CC} = MIN,	N = 2 M	IOL = 16 mA		0.47	0.7		0.47	0.7	
VOL	Other outputs	$V_{II} = MAX$	VIH - 2 V,	IOL = 4 mA		0.25	0.4		0.25	0.4	V V
				I _{OL} = 8 mA					0.35	0.5	
l _l		V _{CC} = MAX,	V1 = 7 V				0.1			0.1	mΑ
	Any S			-	20					20	
1	Any A or B		V 27.V				100			100	
ін	Cn ('LS381A)	$V_{CC} = MAX,$	vi - 2.7 v				80			80	μA
	C _n ('LS382A)	1					100			100	
	Any S			·····			- 0.2			- 0.2	
	Any A or B		N - 0 4 M				- 1			- 1	
^ו ۱	C _n ('LS381A)	$V_{\rm CC} = MAX,$	VI = 0.4 V				- 0.8			- 0.8	mΑ
	Cn ('LS382A)						- 0.8			- 0,8	
los§		VCC = MAX			- 20		- 100	- 20		- 100	mA
ICC		V _{CC} = MAX, All inputs grou	nded, autputs op	ben		35	65		35	65	mA

[†] For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

 \ddagger All typical values are at $V_{CC} = 5 V$, $T_A = 25^{\circ}C$.

§ Not more than one output should be shorted at a time, and duration of the short circuit should not exceed one second.

SN54LS381A, SN54LS382A, SN74LS381A, SN74LS382A ARITHMETIC LOGIC UNITS/FUNCTION GENERATORS

	FROM	то				LS381/	4		LS382														
PARAMETER	(INPUT)	(OUTPUT)	TEST CON	DITIONS	MIN	түр	MAX	MIN	түр	MAX	UNIT												
^t PLH	Cn	Any F				18	27		18	27	- 115												
^t PHL	Ch					14	21		14	21													
^t РLН	A and A and R	G				20	30																
^t PHL	Any A or B	G				21	33				ns												
tPLH	Any A or B	P				21	33				ns												
^t PHL		•				23	33																
^t PLH	A; or B;	Fi				20	30		20	30	пѕ												
^t PHL		'		Cլ = 15 pF		15	23		15	23	115												
^t ₽LH	S0, S1, S2	Fj				35	53		35	53	- ns												
^t PHL	30, 31, 32	• 1				34	51		34	51													
^t PLH	S0, S1, S2	GorP	$B_1 = 2kO$			31	47				កទ												
^t PHL	30, 31, 32		11 E - 2 Ka2,			32	48																
tPLH	Any A or B	C .	C	C	C	C	Cont	6	6 .	C	C .	C (<u> </u>	C 1							28	42	
tPHL		C _{n+4}							26	39	ns												
tPLH	Any A or B	OVR							23	35	ns												
tPHL		001				-			27	41	ns												
^t PLH	S0, S1, S2	C _{n+4} or							38	57	nş												
^t PHL	00, 01, 02	OVR							36	54	115												
tPLH	~	01/5							10	15_													
^t PHL	С _п	OVR							13	23													
^t PLH	6	<u> </u>							13	21													
^t PHL	С _п	C _{n+4}							11	20	ns												

switching characteristics, V_{CC} = 5 V, T_A = 25° C (see note 3)

NOTE 3: Load circuits and voltage waveforms are shown in Section 1.

SN54S381, SN74S381 **ARITHMETIC LOGIC UNITS/FUNCTION GENERATORS**

		-		-				
absolute maximum ratings over oper	ating free-a	air ter	mper	ature	range	(unles	s otherwise no	ited)
Supply voltage, VCC (see Note 1)								7 V
Input voltage								5.5 V
Interemitter voltage (see Note 2)								
Operating free-air temperature range:	SN54S381							55°C to 125°C
	SN74S381							0°C to 70°C
C								$6E^{\circ}C + 1EO^{\circ}C$

Storage free-air temperature range NOTES: 1. Voltage values, except interemitter voltage, are with respect to network ground terminal.

2. This is the voltage between two emitters of a multiple-emitter transistor. For this circuit, this rating applies to each A input in conjunction with its respective B input; for example A0 with B0, etc.

recommended operating conditions

		SN54S381			SN74S381			
	MIN	NOM	MAX	MIN	NOM	MAX	UNIT	
Supply voltage, VCC	4.5	5	5.5	4.75	5	5.25	v	
High-level output current, IOH			1			-1	ΜM	
Low-level output current, IOL			20			20	mΑ	
Operating free-air temperature, TA	-55		125	σ		70	°C	

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

	PARAMETER		TEST CON	DITIONST	MIN	TYP‡	MAX	UNIT
VIH	High-level input voltage				2			v
VIL	Low-level input voltage						0.8	V
Vik	Input clamp voltage		V _{CC} = MIN,	ij = -18 mA			-1.2	٧
	High-level output voltage	SN54S381	$V_{CC} = MIN,$	V _{IH} = 2 V,	2.4	3.4		
⊻он	Aigh-level output voltage	SN74S381	V _{IL} = 0.8 V,	^I OH ⁼ −1 mA	2.7	3.4		v
Val	Low-level output voltage		V _{CC} = MIN,	VIH = 2 V,	1		0,5	v
Vol	LOW-level og (but voltage		VIL = 0.8 V,	l _{OL} ≈ 20 mA	i		0.5	v
lj –	Input current at maximum input voltage		V _{CC} = MAX,	V _I = 5.5 V			1	mA
		Any S input	1				50	
ЦН	High-level input current	Cn	V _{CC} = MAX,	V = 2.7 V			250	μA
		All others					200	
		Any Sinput					-2	
hι	Low-level input current	Cn	V _{CC} = MAX,	V; = 0.5 V			-8	mΑ
		All others					-6	
los	Short-circuit output current§		V _{CC} = MAX		-40		-100	mΑ
1cc	Supply current		V _{CC} = MAX			105	160	mA

[†]For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

[‡]All typical values are at $V_{CC} = 5 V$, $T_A = 25^{\circ}C$. [§]Not more than one output should be shorted at a time.

switching characteristics, VCC = 5 V, TA = 25° C

PARAMETER	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	MIN	түр	MAX	UNIT
tPLH	- Cn	Any F			10	17	
^t PHL		Anyr			10	17	ns –
tPLH	Any A or B	G			12	20	
^t PHL			C _L = 15 pF, R _L = 280 Ω,		12	20	ns
tPLH	Any A or B	P			11	18	
^t PHL		F	See Note 3		11	18	ns
^t PLH	A; or B;	F;			18	27	
^t PHL		F 1			16	25	ns
^t PLH	Any S	Any			18	30	
^t PHL	017.3			1	18	30	n\$

NOTE 3: Load circuits and voltage waveforms are shown in Section 1.

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any semiconductor product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

TI warrants performance of its semiconductor products and related software to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

Certain applications using semiconductor products may involve potential risks of death, personal injury, or severe property or environmental damage ("Critical Applications").

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS.

Inclusion of TI products in such applications is understood to be fully at the risk of the customer. Use of TI products in such applications requires the written approval of an appropriate TI officer. Questions concerning potential risk applications should be directed to TI through a local SC sales office.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards should be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or services described herein. Nor does TI warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used.

Copyright © 1996, Texas Instruments Incorporated