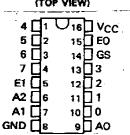
SN54LS348, SN74LS348 (TIM9908) 8-LINE TO 3-LINE PRIORITY ENCODERS WITH 3-STATE OUTPUTS

OCTOBER 1976 - REVISED MARCH 1988

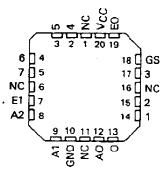
- 3-State Outputs Drive Bus Lines Directly
- Encodes 8 Data Lines to 3-Line Binary (Octal)
- Applications Include:

 N-Bit Encoding
 Code Converters and Generators
- Typical Data Delay . . . 15 ns
- Typical Power Dissipation . . . 60 mW

description

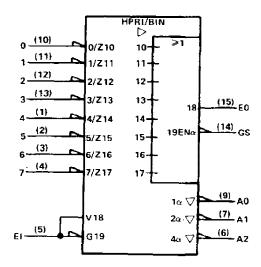

These TTL encoders feature priority decoding of the inputs to ensure that only the highest-order data line is encoded. The 'LS348 circuits encode eight data lines to three-line (4-2-1) binary (octal). Cascading circuitry (enable input E1 and enable output E0) has been provided to allow octal expansion. Outputs A0, A1, and A2 are implemented in three-state logic for easy expansion up to 64 lines without the need for external circuitry. See Typical Application Data.

FUNCTION TABLE


	INPUTS									Ol	JTPU	TS	
El	0	1	2	3	4	5	6	7	A2	A 1	AO	GS	EO
Ξ	X	Х	X	Х	Х	Х	х	Х	z	Ż	Z	н	Н
L	Н	Н	Н	Н	Н	Н	Н	Н	Z	Z	Z	н	L
L	х	Χ	Х	Х	X	Х	Х	L	L	L	L	L	Н
L	х	X	Х	Х	Х	Х	L	Н	L	L	Н	L	Н
L	х	X	X	Х	Х	L	Н	Н	L	н	L	L	н
L	×	Х	Х	Х	Ļ	Н	Н	Н	L	н	н	L	н
L	×	Х	Х	L	Н	Н	Н	Н	н	L	L	L	H
L	X	Х	Ł	H	Н	Н	Н	Н	н	L,	Н	L	н
L	Х	L	Н	Н	Н	Н	Н	H.	н	н	L	L	н
ᄔ	Ļ	Н	H	H	Н	H	H	н	н	Н	н	L	Н

H = high logic level, L = low logic level, X = irrelevant

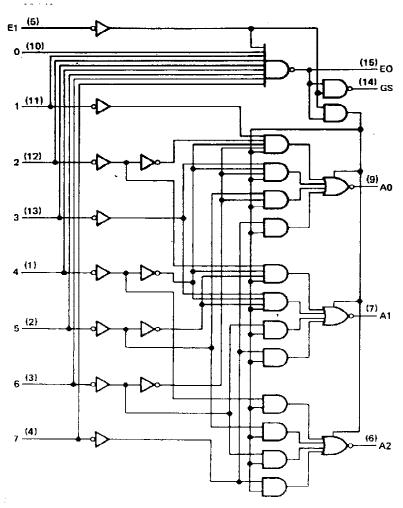
SN54LS348 ... J OR W PACKAGE SN74LS348 ... D OR N PACKAGE (TOP VIEW)



SN54LS348 . . . FK PACKAGE (TOP VIEW)

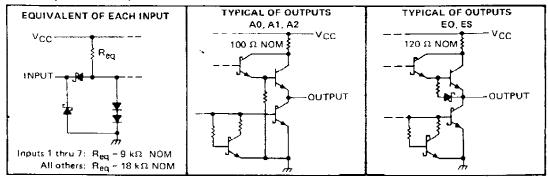
NC - No internal connection

logic symbol[†]



[†]This symbol is in accordance with ANSI/IEEE Std. 91-1984 and IEC Publication 617-12.

Z = high-impedance state


Pin numbers shown are for D, J, N, and W packages.

logic diagram (positive logic)

Pin numbers shown are for D, J, N, and W packages.

schematic of inputs and outputs

SN54LS348, SN74LS348 (TIM9908) 8-LINE TO 3-LINE PRIORITY ENCODERS WITH 3-STATE OUTPUTS

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, VCC (see Note 1) .				_											7 V
Input voltage								-			•	٠.		. :	7 V
Operating free-air temperature range:	SN54LS348		٠		-			٠	•		•	-55°	C to	125	5°C
	SN74LS348														
Storage temperature range								_	_			-65°	C to	150	J°C

NOTE 1: Voltage values are with respect to network ground terminal.

recommended operating conditions

		SN54LS348 SN74LS348					UNIT	
	į	MIN	NOM	MAX	MIN	NOM	MAX	ONT.
Supply voltage, VCC		4.5	5	5.5	4.75	5	5.25	>
igh-level output current, IOH	A0, A1, A2			-1			-2.6	mΑ
uran-iener ombar carrieur 10H	EO, GS			400			-4 00	μΑ
1 au taual autaua au maa 1 -	A0, A1, A2			12			24	mΑ
COM-level on that causeut' (Of	EO, GS			4			8	mΑ
Operating free-air temperature, TA		-55		125	0		7 0	°C

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

	PARAMETER		7557.00	IDITIONST'	SI	454LS	348	St	174LS3	348	UNIT
	PARAMETER		TEST COF	MOTHONS	MIN	TYP\$	MAX	MIN	TYP‡	MAX	UNII
VIH	High-level input voltage				2			2			٧
VIL	Low-level input voltage						0.7			0.8	V
VIK	Input clamp voltage		V _{CC} = MIN,	I _I = -18 mA			-1.5			-1.5	V
	High-level	A0, A1, A2	VCC = MIN,	I _{OH} = -1 mA	2.4	2.4 3.1					
VOH	output voltage	AV, A1, A2	VIH = 2 V,	1 _{OH} = -2.6 mA				2.4	3,1		٧
	odcput vortage	EO, GS	VIL - VILmax	I _{OH} = -400 μA	2.5	3,4		2.7	3.4		
		A0, A1, A2	3/ 58(8)	I _{OL} = 12 mA		0.25	0.4		0.25	0.4	
VOL	Low-level Output voltage	A0, A1, A2	VCC = MIN,	10L = 24 mA				_	0.35	0.5	l v
YOL		EO. GS	V _{IH} = 2 V,	IOL = 4 mA		0,25	0.4		0.25	0.4	•
		EU, G5	VIC = VICmax	1 _{OL} = 8 mA	-				0,35	0.5	
107	Off-State (high-impedance	A0, A1, A2	V _{CC} = MAX,	V _O = 2.7 V			20			20	
·02	state) output current	7.0, A1, A2	V _{IH} = 2 V	V _O = 0.4 V			-20			-20	μA
l _l	Input current at maximum	Inputs 1 thru 7					0,2			0.2	_ ^
- '1	input voltage	All other inputs	V _{CC} = MAX,	V = / V			0,1			0.1	mA
1	High lovel inner access	Inputs 1 thru 7					40			40	
IH.	High-level input current	All other inputs	V _{CC} = MAX,	V ₁ = 2.7 V			20			20	μA
Lea	Lauriana inami	Inputs 1 thru 7					-0.8			-0.8	mA
ηŁ	Low-level input current	All other inputs	V _{CC} = MAX,	V ₁ = 0.4 V			-0.4			-0.4	mA
loo	Short simulation as 8	Outputs A0, A1, A2	V 144.V		-30		-130	-30		-130	_ ^
los	Short-circuit output current §	Outputs EO, GS	V _{CC} = MAX		-20		-100	-20		-100	mA
100	Supply current	·	VCC - MAX,	Condition 1		13	25		13	25	
(CC	Anhhit chilett(See Note 2	Condition 2		12	23		12	23	mΑ

For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

NOTE 2: ICC (condition 1) is measured with inputs 7 and EI grounded, other inputs and outputs open. ICC (condition 2) is measured with all inputs and outputs open.

^{\$} All typical values are at $V_{CC} = 5 V_c T_A = 25^{\circ} C$.

[§] Not more than one output should be shorted at a time.

SN54LS348, SN74LS348 (TIM9908) 8-LINE TO 3-LINE PRIORITY ENCODERS WITH 3-STATE OUTPUTS

switching characteristics, $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$

PARAMETER†	FROM (INPUT)	TO (OUTPUT)	WAVEFORM	TEST CONDITIONS	MIN	TYP	MAX	UNIT
tPLH .	d 45 7	A0, A1, or A2	In-phase			11	17	ns
†PHL	1 thru 7	AU, AI, UI AZ	output	C. = 45 = 5		20	30	
ФLН	4.5. 7	AD A1 62	Out-of-phase	C _L = 45 pF, R _L = 667 Ω,		23	35	ns
ФHL .	1 thru 7	A0, A1, or A2	output	See Note 3		23	35	
tPZH	ΕΊ	AO A1 A7		See Note 3		25	39	ns
ΨZL	E'	A0, A1, or A2				24	41	1
^t PLH	0 thru 7	EO	Out-of-phase			11	18	ns
PHL	U WING 7	50	output	,		26.	40	
^t PLH	0.4.7	cs	In-phase	C 1E_E		38	55	ns
¹PHL	0 thru 7	GS	output	CL=15pF RL=2kΩ,		.9	21	
tPLH	Ei	GS	In-phase	See Note 3		11	17	ns
t PHL	F '	GS	output	See Note 3		14	36	
ФLН	E!	EO	In-phase	·		17	26	ns
tPHL	E'	E0	output			25	40	7 '''
ФHZ	EI	40 41 42		C _L ≃ 5 pF		18	27	ns
tPLZ] ='	A0, A1, or A2		RL=667Ω		23	35] ' "

[†] tpLH = propagation delay time, low-to-high-level output

tpzH = output enable time to high level

tpzl = output enable time to low level

 t_{PHZ} = output disable time from high level

tptz = output disable time from low level

NOTE 3: Load circuits and voltage waveforms are shown in Section 1.

TYPICAL APPLICATION DATA

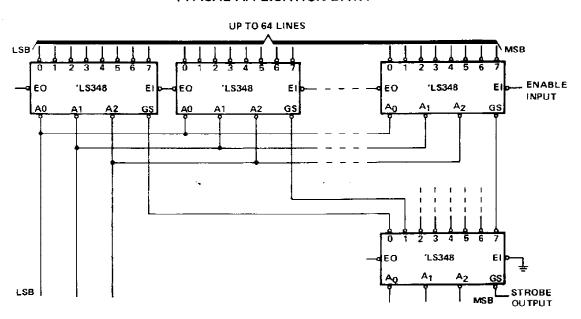


FIGURE 1-PRIORITY ENCODER WITH UP TO 64 INPUTS.

tpHL = propagation delay time, high-to-low-level output

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any semiconductor product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

TI warrants performance of its semiconductor products and related software to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

Certain applications using semiconductor products may involve potential risks of death, personal injury, or severe property or environmental damage ("Critical Applications").

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS.

Inclusion of TI products in such applications is understood to be fully at the risk of the customer. Use of TI products in such applications requires the written approval of an appropriate TI officer. Questions concerning potential risk applications should be directed to TI through a local SC sales office.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards should be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or services described herein. Nor does TI warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used.

Copyright © 1996, Texas Instruments Incorporated