SN54LS323, SN74LS323 **8-BIT UNIVERSAL SHIFT/STORAGE REGISTERS**

SDLS160

	OCTOBER 1976 - REVISED MARCH 1988
 Multiplexed Inputs/Outputs Provide Improved Bit Density 	SN54LS323 J OR W PACKAGE SN74LS323 DW OR N PACKAGE (TOP VIEW)
 Four Modes of Operation: Hold (Store) Shift Left Shift Right Load Data 	$\begin{array}{c} so \boxed{1} \overline{\bigcup} 20 \boxed{1} v_{CC} \\ \overline{G1} \boxed{2} & 19 \underbrace{1} S1 \\ \overline{G2} \boxed{3} & 18 \boxed{2} SL \end{array}$
 Operates with Outputs Enabled or at High Z 	$ G/Q_{G} \begin{bmatrix} 4 & 17 \\ 5 & 16 \\ F/Q_{E} \end{bmatrix}^{5} = 16 \\ H/Q_{H} $
 3-State Outputs Drive Bus Lines Directly Can Be Cascaded for N-Bit Word Lengths 	C/QC ^C 6 15 DF/QF A/QA ^C 7 14 DD/QD QA ^C C8 13 DB/QB
 Typical Power Dissipation 175 mW 	
 Exceptionally Stable Shift (Clock) Frequency 25 MHz 	SN54LS323 FK PACKAGE
 Applications: Stacked or Push-Down Registers, Buffer Storage, and Accumulator Registers 	18 15 8 5 5 3 2 1 20 19 G/06 4 18 U SL
 SN54LS299 and SN74LS299 Are Similar But Have Direct Overriding Clear 	$E/QE[15 17 [Q_{H'}]C/QC] 6 16 [H/Q_{H}]A/QA 7 15 [F/QF]QA' 8 14 [D/QD]9 10 11 12 13 16 0 0 0$
escription	CLF CLK CLK B/OB

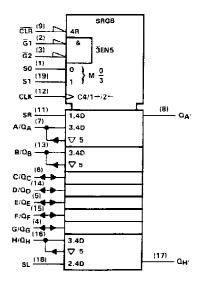
de

۰.

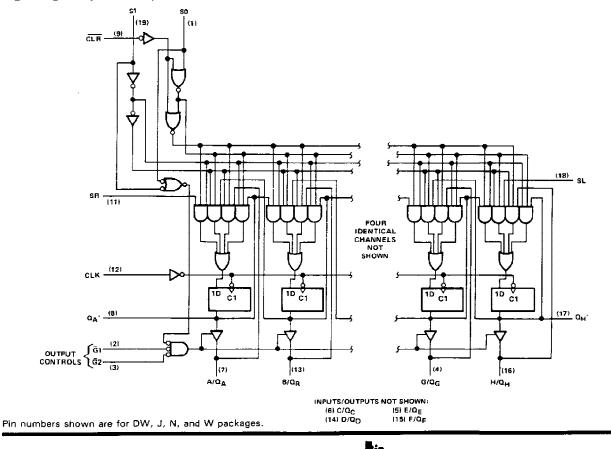
These Low-Power Schottky eight-bit universal registers feature multiplexed inputs/outputs to achieve full eight-bit data handling in a single 20-pin package. Two function-select inputs and two output-control inputs can be used to choose the modes of operation listed in the function table. Synchronous parallel loading is accomplished by taking both function-select lines, S0 and S1, high. This places the three-state outputs in a high-impedance state, which permits data that is applied on the input/output lines to be clocked into the register. Reading out of the register can be accomplished while the outputs are enabled in any mode. The clear function is synchronous, and a low level at the clear input clears the register on the next low-to-high transition of the clock.

MODE	INPUTS							INPUTS/OUTPUTS						OUTPUTS				
	CLR	FUNCTION		OUTPUT CONTROL		CLK	SERIAL		A/Q.	8/Qg	c/Qc	0/00	E/Qr	F/Qs	G/Qc	Н/Он		
		<u>S1</u>	SO	G1†	G2†		SL	SR		-	•	-	-	'	-		1	••
Clear	L	X	L	L.	L .	t	×	x	L	Ļ	L	ι	L	L	L	Ļ	L	L
	Ļ	L	x	L	L	t	×	x	ι	L	L	L	L	L	L	L	ι	L
	L	н	н	x	X	t	X	x	x	х	x	х	x	х	x	x	L.	Ĺ
Hold	н	L	L	L	L	×	X	x	QAO	QBO	QCO	000	QEO	QFO	QGO	Q _{H0}	Q _{A0}	Q HO
	н	×	х	L	L (L	X	x	QA0	080	QC0	QD0	QE0	QFO		QHD		
Shift Right	н	L	Н	L	L	t	X	Ĥ	н			QCu	Q _{Dn}	Q _E ,	QEn	QGo	H	QGn
	н	L	н	L	- L	t	×	L					-			QGn	L	QGn
Shift Left	н	н	L	L	L	t	м	X	Q ₈ n	ūCn	QDn	ûEn	QEn	QGn	QHo	н	QBn	H
anni Feil I	н	н	L	L	- L	1	L	x	Q _{Bn}	Q _{Cn}	۵Du	Q _{En}	Q _{Fn}	Q _{Gn}	QHn	L	QBn	L
Load	Ħ	н	н	×	X	1	X	X	a	ь	C	d	e	f	9	ħ	a	h

FUNCTION TABLE


a... h = the level of the steady-state input at inputs A through H, respectively. These data are loaded into the flip-flops while the flip-flop outputs are isolated from the input/output terminals.

PRODUCTION DATA documents contain information FIGURE 104 DATA occuments contain information current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include texting of all parameters.


SN54LS323, SN74LS323 8-BIT UNIVERSAL SHIFT/STORAGE REGISTERS

logic symbol[†]

 $^\dagger This symbol is in accordance with ANSI/IEEE Std. 91-1984 and IEC Publication 617-12. Pin numbers shown are for DW, J, N, and W packages.$

logic diagram (positive logic)

schematics of inputs and outputs, absolute maximum ratings, recommended operating conditions, and electrical characteristics

Same as SN54LS299 and SN74LS299, except t_{SU} (Clear Inactive) does not apply.

switching characteristics, $V_{CC} = 5 V$, $T_A = 25^{\circ}C$

PARAMETER [†]	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	MIN	түр	MAX	UNIT MHz
fmax			See Note 1	25	35		
tPLH	CLK	Q _A , or Q _H ,	0 - 15 - 5 - 7 - 2 - 10		22	33	
tPHL	UER		$C_{L} = 15 pF, R_{L} = 2 k\Omega$		26	39	ns
^t PLH	CLK	Q_A thru Q_H		1	17	25	ns
^t PHL	GER				25	39	
tPZH	<u>Ğ</u> 1, <u>Ğ</u> 2	Q_A thru Q_H	ິ CL = 45 pF, RL = 665 Ω		14	21	
ΦZL	d1, d2				20	30	
^t ₽HZ	^{тр} НZ <u></u>	Q _A thru Q _H			10	20	
TPLZ	01, 01		CL=5pF, RL=66 5Ω		10	15	ns

[†]t_{max} = maximum clock frequency

tPLH = Propagation delay time, low-to-high-level output

tpHL = Propagation delay time, high-to-low-level output

tpzH = Output enable time to high level

tpzL = Output enable time to low level

tpHZ = Output disable time from high level

tpLZ = Output disable time from low level

NOTE 1: For testing f_{max}, all outputs are loaded simultaneously, each with C_L and R_L as specified for the propagation times. Load circuits and voltage waveforms are shown in Section 1.

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any semiconductor product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

TI warrants performance of its semiconductor products and related software to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

Certain applications using semiconductor products may involve potential risks of death, personal injury, or severe property or environmental damage ("Critical Applications").

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS.

Inclusion of TI products in such applications is understood to be fully at the risk of the customer. Use of TI products in such applications requires the written approval of an appropriate TI officer. Questions concerning potential risk applications should be directed to TI through a local SC sales office.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards should be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or services described herein. Nor does TI warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used.

Copyright © 1996, Texas Instruments Incorporated