# SN54LS299, SN54S299, SN74LS299, SN74S299 8-BIT UNIVERSAL SHIFT/STORAGE REGISTERS

SDLS156

#### MARCH 1974 - REVISED MARCH 1988

| <ul> <li>Multiplexed Inpu<br/>Improved Bit De</li> </ul>             |                                                    | de                                        | SN54LS299, SN54S299 J OR W PACKAGE<br>SN74LS299, SN74S299 DW OR N PACKAG<br>(TOP VIEW)                                                                                                                   |  |
|----------------------------------------------------------------------|----------------------------------------------------|-------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| <ul> <li>Four Modes of C<br/>Hold (Store)<br/>Shift Right</li> </ul> | perations:<br>Shift Left<br>Load Data              |                                           |                                                                                                                                                                                                          |  |
| Operates with O                                                      | ·                                                  | •                                         | $\begin{array}{c} C \land Q_{C} \\ C \land Q_{C} \\ A \land Q_{A} \\ A \land Q_{A} \\ Q_{A} \\ Q_{A} \\ Q_{A} \\ \end{array} \begin{array}{c} 15 \\ 14 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $ |  |
| <ul><li> 3-State Outputs</li><li> Can Be Cascade</li></ul>           |                                                    |                                           |                                                                                                                                                                                                          |  |
| <ul> <li>SN54LS323 and 5<br/>Have Synchrono</li> </ul>               |                                                    | milar But                                 | SN54LS299, SN54S299 FK PACKAGE<br>(TOP VIEW)                                                                                                                                                             |  |
|                                                                      | ish-Down Registe<br>a, and Accumula                |                                           | Віб В З Б<br>G/QG] 4 18 [SL<br>E/OE] 5 17 [QH'<br>C/QC] 6 16 [JH/QH                                                                                                                                      |  |
| т <b>үре</b><br>1LS299                                               | GUARANTEED<br>SHIFT (CLOCK)<br>FREQUENCY<br>25 MHz | TYPICAL<br>POWER<br>DISSIPATION<br>175 mW | A/ $Q_A$ 7 15 ( $F/Q_F$<br>$Q_{A'}$ 8 14 ( $D/Q_D$<br>10 10 11 12 13<br>10 $G = \times \infty$                                                                                                           |  |
| 5299                                                                 | 50 MHz                                             | 700 mW                                    | Se se Se                                                                                                                                                                                                 |  |

#### description

These Schottky TTL eight-bit universal registers feature multiplexed inputs/outputs to achieve full eight-bit data handling in a single 20-pin package. Two function-select inputs and two output-control inputs can be used to choose the modes of operation listed in the function table.

Synchronous parallel loading is accomplished by taking both function-select lines, S0 and S1, high. This places the three-state outputs in a high-impedance state, which permits data that is applied on the input/output lines to be clocked into the register. Reading out of the register can be accomplished while the outputs are enabled in any mode. A direct overriding input is provided to clear the register whether the outputs are enabled or off.

|             | INPUTS |            |             |     |      |     |     | INPUTS/OUTPUTS |      |                 |                 |                 |      |                 |                 | OUTPUTS          |                  |                 |
|-------------|--------|------------|-------------|-----|------|-----|-----|----------------|------|-----------------|-----------------|-----------------|------|-----------------|-----------------|------------------|------------------|-----------------|
| MODE        | CLR    | FUNC       | TION<br>ECT |     | TROL | CLK | SEF | NAL            | A/QA | 8/Q8            | c/QC            | D/QD            | E/QE | F/QF            | G/QG            | н/Q <sub>Н</sub> | ۵ <sub>4</sub> , | ан              |
|             |        | <b>S</b> 1 | \$0         | G11 | Ğ21  |     | SL  | SR             |      |                 |                 |                 |      |                 |                 |                  |                  |                 |
|             | L      | ×          | L           | L   | L    | x   | X   | x              | L    | L               | L               | L               | L    | L               | L               | L                | L                | L               |
| Ciear       | L      | L          | ×           | L   | L    | x   | ×   | x              | ίL.  | L               | LL              | L               | L    | L               | L               | L                | L                | L               |
|             | L      | н          | н           | x I | x    | ×   | X   | ×              | ×    | ×               | ×               | ×               | ×    | ×               | x               | ×                | L                | L               |
| t           | н      | L          | L           | L   | Ľ    | x   | X   | х              | OA0  | OBO             | aco             | 000             | QEO  | QFO             | QGO             | QH0              | QA0              | а <sub>нс</sub> |
| Hold        | н      | ×          | х           | L.  | L    | L   | ×   | x              | QA0  | 0 <sub>80</sub> | a <sub>co</sub> | 0 <sub>D0</sub> | QEO  | ∩¢0             | D <sub>G0</sub> | QHO              | Q <sub>A0</sub>  | QHC             |
|             | н      | +          | н           | L   | L    | ÷   | X   | н              | н    | QAn             | QBu             | QCn             | QDn  | α <sub>En</sub> | QFn             | QGu              | н                | a <sub>Gr</sub> |
| Shift Right | н      | ι ι        | н           | L   | L    | •   | X   | L              | L    | QAn             | QBn             | üÇn             | QDn. | QEn             | OFn             | QGn_             | L                | ۵ <sub>Gr</sub> |
|             | н      | н          | L           | L   | L    | •   | н   | X              | QBn  | a <sub>Cn</sub> | ۵pn             | Q <sub>En</sub> | QEn  | QGn             | Q <sub>Hn</sub> | н                | QBn              | H               |
| Shift Left  | н      | н          | L           | L . | Ł    | •   | L   | ×              | QBn  | a <sub>Cn</sub> | Q <sub>Dn</sub> | QEn             | QFn  | ∆ <sub>Gn</sub> | α <sub>Hn</sub> | L                | a <sub>Bn</sub>  | L               |
| Load        | н      | <u>+ H</u> | н           | X   | х    | T T | X   | х              | a    | D               | c               | d               | e    | f               | 9               | h                | a                | 'n              |

FUNCTION TABLE

 $a_{+++}$  h = the level of the steady state input at inputs A through H, respectively. These data are loaded into the flip-flops while the flip flop outputs are isolated from the input/output terminals.

PRODUCTION DATA documents contain information current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warrenty. Production processing does not necessarily include testing of all parameters.



## SN54LS299, SN54S299, SN74LS299, SN74S299 8-BIT UNIVERSAL SHIFT/STORAGE REGISTERS

logic symbol<sup>†</sup>



 $^\dagger$  This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12. Pin numbers shown are for DW, J, N, and W packages.



#### logic diagram (positive logic)

Pin numbers shown are for DW, J, N, and W packages.



# SN54LS299, SN74LS299 8-BIT UNIVERSAL SHIFT/STORAGE REGISTERS

schematics of inputs and outputs



### absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

| Supply voltage, VCC (see Note 1)                | · · · · · · · · · · · · · · · · · · ·              |
|-------------------------------------------------|----------------------------------------------------|
| Input voltage                                   | · · <i>, ·</i> · · · · · · · · · · · · · · · · · · |
|                                                 |                                                    |
| Operating free-air temperature range: SN54LS299 |                                                    |
|                                                 |                                                    |
| Storage temperature                             |                                                    |

NOTE 1: Voltage values are with respect to network ground terminal.

#### recommended operating conditions

|                                    |                                      | s   | N54LS2 | 99   | SN74LS299 |     |      |      |
|------------------------------------|--------------------------------------|-----|--------|------|-----------|-----|------|------|
|                                    |                                      | MIN | NOM    | MAX  | MIN       | NOM | MAX  |      |
| Supply voltage, VCC                |                                      | 4.5 | 5      | 5.5  | 4.75      | 5   | 5,25 | V    |
| High-level output current, IOH     | Q <sub>A</sub> thru Q <sub>H</sub>   |     |        | 1    |           |     | -2.6 | mA   |
| High level batbat carrent, 10H     | Q <sub>A</sub> ' or Q <sub>H</sub> ' |     |        | -0.4 |           |     | -0.4 |      |
|                                    | Q <sub>A</sub> thru Q <sub>H</sub>   |     |        | 12   |           | _   | 24   | mA   |
| Low-level output current, IOL      | Q <sub>A</sub> , or Q <sub>H</sub> , |     |        | 4    |           |     | 8    |      |
| Clock frequency, fclock            |                                      | 0   |        | 20   | 0         |     | 20   | MHz  |
| Width of clock pulse, tw(clock)    | Clock high                           | 30  |        |      | 30        |     |      |      |
|                                    | Clack law                            | 18  |        |      | 10        |     |      | ns   |
| Width of clear pulse, tw(clear)    | Clear low                            | 25  |        |      | 20        | _   |      | ns   |
|                                    | Select                               | 35* |        |      | 351       |     |      |      |
|                                    | High-level data <sup>†</sup>         | 201 |        |      | 201       |     |      | ]    |
| Setup time, t <sub>su</sub>        | Low-level data <sup>†</sup>          | 201 |        |      | 201       |     |      | ns . |
|                                    | Clear inactive-state                 | 241 |        |      | 201       |     |      |      |
|                                    | Select                               | 101 |        |      | 101       |     |      |      |
| Hold time, t <sub>h</sub>          | Data <sup>†</sup>                    | 31  |        | ;    | 01        |     |      | ns   |
| Operating free-air temperature, TA | · · · · · ·                          | -55 |        | 125  | 0         |     | 70   | C    |

 $^\dagger$  Data includes the two serial inputs and the eight input/output data lines.

## SN54LS299, SN74LS299 **8-BIT UNIVERSAL SHIFT/STORAGE REGISTERS**

|      | PARAMETER                     |                                       | TEST COM                               | DITIONS T               | SI SI | N54LS2 | 99   | SI       | 174L52 | 99   | UNIT |
|------|-------------------------------|---------------------------------------|----------------------------------------|-------------------------|-------|--------|------|----------|--------|------|------|
|      |                               | · · · · · · · · · · · · · · · · · · · | TEST CONDITIONS <sup>†</sup>           |                         |       | түр∔   | MAX  | MIN      | ΤΥΡ    | MAX  |      |
| ⊻ін  | High-level input voltage      |                                       |                                        |                         | 2     |        |      | 2        |        |      | V    |
| VIL  | Low-level input voltage       |                                       |                                        |                         |       |        | 0.7  | <u> </u> |        | 0.8  | V    |
| VIK  | /IK Input clamp voltage       |                                       | VCC = MIN,                             | 1 <sub>1</sub> = -18 mA |       |        | -1.5 | 1        |        | -1.5 | V    |
| Valu | High-level output voltage     | QA thru QH                            |                                        | V <sub>IH</sub> = 2 V,  | 2.4   | 3.2    |      | 2.4      | 3.1    |      |      |
| ∨он  | High-rever output vortage     | Q <sub>A</sub> ' or Q <sub>H</sub> '  | V <sub>IL</sub> ≂ V <sub>IL</sub> max, | I <sub>DH</sub> = MAX   | 2.5   | 3.4    |      | 2.7 3.4  |        |      | V    |
|      |                               | Q <sub>A</sub> thru Q <sub>H</sub>    | Vcc = MIN,                             | 10L - 12 mA             |       | 0.25   | 0.4  |          | 0.25   | 0.4  |      |
| Ver  | Low-level output voltage      |                                       | V <sub>IH</sub> = 2 V,                 | 1 <sub>0L</sub> = 24 mA |       |        |      |          | 0.35   | 0.5  | v    |
| VOL  | LOW-level Output voltage      | QA' or QH'                            | VIL = Vil max                          | 10L = 4 mA              |       | 0.25   | 0.4  |          | 0.25   | 0.4  |      |
|      |                               | CALOR CH.                             |                                        | 1 <sub>0L</sub> = 8 mA  |       |        |      |          | 0.35   | 0.5  |      |
| 1    | Off-state output current,     | Q <sub>A</sub> thru Q <sub>H</sub>    | V <sub>CC</sub> = MAX,                 | $V_{III} = 2 V,$        |       |        | 40   |          |        | 10   |      |
| lоzн | high-level voltage applied    |                                       | Vo = 2.7 V                             |                         |       |        | 40   |          | 40     | μA   |      |
| 1071 | Off-state output current,     | QA thru QH VCC = MAX,                 | V <sub>CC</sub> = MAX,                 | V <sub>IH</sub> = 2 V,  | T     |        | -400 |          |        | -400 |      |
| 10ZL | low-level voltage applied     | α <sub>A</sub> uni α <sub>H</sub>     | V <sub>O</sub> = 0.4 V                 |                         | -40   |        | -400 |          |        | -400 | μA   |
|      | Input current at maximum      | SO, S1                                |                                        | Vi = 7 V                |       |        | 200  |          |        | 200  |      |
| 4    |                               | A thru H                              | V <sub>CC</sub> = MAX                  | V <sub>1</sub> = 5.5 V  |       |        | 100  |          |        | 100  | μA   |
|      | input voltage                 | Any other                             |                                        | V1 = 7 V                |       |        | 100  |          |        | 100  |      |
| 1    | blick local is not according  | A thru H, S0, S1                      |                                        |                         |       |        | 40   |          |        | 40   |      |
| ΠH   | High-level input current      | Any other                             | V <sub>CC</sub> = MAX,                 | V <sub>1</sub> = 2.7 V  |       |        | 20   |          |        | 20   | μA   |
|      |                               | S0, S1                                |                                        |                         |       |        | -0.8 |          |        | -0.8 |      |
| ΙιL  | Low-level input current       | Any other                             | V <sub>CC</sub> = MAX.                 | VI ≈ 0.4 V              |       |        | -0.4 |          |        | -0.4 | mΑ   |
| ,    | <u></u>                       | Q <sub>A</sub> thru Q <sub>H</sub>    |                                        |                         | -30   |        | -130 | -30      |        | -130 |      |
| los  | Short-circuit output current§ | QA' or QH'                            | V <sub>CC</sub> = MAX                  |                         | -20   |        | -100 | -20      |        | -100 | mΑ   |
| cc   | Supply current                |                                       | V <sub>CC</sub> = MAX                  |                         |       | 33     | 53   |          | 33     | 53   | mΑ   |

### electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

<sup>1</sup>For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.  $\ddagger$ Ail typical values are at V<sub>CC</sub> = 5 V, T<sub>A</sub> = 25°C.

 ${
m \$Not}$  more than one output should be shorted at a time and duration of the short-circuit should not exceed one second.

### switching characteristics, VCC = 5 V, TA = $25^{\circ}$ C

| PARAMETER        | FROM<br>(INPUT)          | то<br>(ОUТРUТ)                     | TEST CONDITIONS                               | MIN        | түр | МАХ |      |     |
|------------------|--------------------------|------------------------------------|-----------------------------------------------|------------|-----|-----|------|-----|
| fmax             |                          |                                    | See Note 2                                    | 20         | 35  |     | MHz  |     |
| tpLH             | CLK                      | QA' or QH'                         | $R_1 = 2 k\Omega$ , $C_1 = 15 pF$             | T          | 22  | 33  |      |     |
| <sup>†</sup> PHL |                          |                                    |                                               |            |     | 26  | 39   | ns. |
| tPHL             | CLR                      | QA' or QH'                         | 7                                             |            | 27  | 40  | ns   |     |
| (PLH             |                          | Q <sub>A</sub> thru Q <sub>H</sub> |                                               | 1          | 17  | 25  |      |     |
| <sup>t</sup> PHL | CLK                      | OA WILL OH                         | RL=065Ω. CL=45pf                              | Cu = 45 nE | 26  | 39  | ns   |     |
| <sup>t</sup> PHL | CLR                      | QA thru QH                         |                                               | <u> </u>   | 26  | 40  | ins  |     |
| tPZH             | - <u>G</u> 1, <u>G</u> 2 | Q <sub>A</sub> thru Q <sub>H</sub> | -                                             |            | 13  | 21  |      |     |
| tPZL             |                          |                                    |                                               |            | 19  | 30  | ns   |     |
| <sup>t</sup> PHZ | <u>Ğ1, Ğ2</u>            | Q <sub>A</sub> thru Q <sub>H</sub> | R <sub>L</sub> - 665 Ω, C <sub>L</sub> = 5 pF | ľ          | 10  | 20  |      |     |
| <sup>t</sup> PLZ |                          |                                    |                                               |            | 10  | 15  | ns 🛛 |     |

 $f_{max} = maximum clock frequency$  $tp_LH = probagation delay time, low to-high level output$  $tp_LH = probagation delay time, high-to-low-level output$  $tp_ZH output enable time to high level$  $tp_ZL = output enable time to low level$  $tp_HZ = output disable time from high level$  $tp_ z = output disable time from high level$  $tp_ z = output disable time from low (evel$ 

 $t_{PLZ}$  - output disable time from low level NOTE 2: For testing  $f_{Max}$ , all outputs are loaded simultaneously, each with CL and RL as specified for the propagation times. Load circuits and voltage waveforms are shown in Section 1.

> -ų TEXAS INSTRUMENTS POST OFFICE BOX 655012 + DALLAS TEXAS 75265

# SN54S299, SN74S299 8-BIT UNIVERSAL SHIFT/STORAGE REGISTERS



### absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

| Supply voltage, VCC (see Note 1)                                         |
|--------------------------------------------------------------------------|
| Input voltage                                                            |
| Off-state output voltage 5.5 V                                           |
| Operating free-air temperature range: SN54S299 (See Note 1)55°C to 125°C |
| SN74S299                                                                 |
| Storage temperature range                                                |

NOTE 1: Voltage values are with respect to network ground terminal.

### recommended operating conditions

|                                    |                                      | 5   | SN54S29 | 9    | ;          | SN74529 | 9    |            |
|------------------------------------|--------------------------------------|-----|---------|------|------------|---------|------|------------|
|                                    |                                      | MIN | NOM     | MAX  | MIN        | NOM     | MAX  |            |
| Supply voltage, V <sub>CC</sub>    |                                      | 4.5 | 5       | 5.5  | 4.75       | 5       | 5.25 | V          |
|                                    | Q <sub>A</sub> thru Q <sub>H</sub>   | 1   |         | -2   |            |         | -6.5 | mA         |
| High-level output current, IOH     | Q <sub>A</sub> ' or Q <sub>H</sub> ' |     |         | -0.5 |            |         | -0.5 |            |
|                                    | Q <sub>A</sub> thru Q <sub>H</sub>   | 1   |         | 20   |            |         | 20   | mA         |
| Low-level output current, IOL      | QA' or QH'                           |     |         | 6    |            |         | 6    |            |
| Clock frequency, fctock            | ····· •                              | 0   |         | 50   | 0          |         | 50   | MH         |
| Vidth of clock pulse, tw(clock)    | Clock high                           | 10  |         |      | 10         |         |      | ns         |
|                                    | Clock low                            | 10  |         |      | 10         |         |      | 115        |
| Width of clear pulse, tw(clear)    | Clear low                            | 10  |         |      | 10         |         |      | n <b>5</b> |
|                                    | Select                               | 151 |         |      | 15†        |         |      |            |
|                                    | High-level data <sup>†</sup>         | 71  |         |      | 7†         |         |      |            |
| Setup time, t <sub>su</sub>        | Low-level data <sup>‡</sup>          | 51  |         |      | 51         |         |      | ns         |
|                                    | Clear inactive-state                 | 101 |         | ·    | 10†        |         |      | 1          |
|                                    | Select                               | 51  |         |      | <b>5</b> ↑ |         |      |            |
| Hold time, t <sub>h</sub>          | Data ‡                               | 51  |         |      | 51         |         |      | ns         |
| Operating free-air temperature, TA |                                      | -55 |         | 125  | 0          |         | 70   | С          |

 $^{\pm}$  Data includes the two serial inputs and the eight input/output data lines.



## SN54S299, SN74S299 **8-BIT UNIVERSAL SHIFT/STORAGE REGISTERS**

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

|      | PARAMETER                              |                                       | TEST CON                 | MIN                    | TYP‡ | MAX | UNIT |      |
|------|----------------------------------------|---------------------------------------|--------------------------|------------------------|------|-----|------|------|
| ViH  | High-level input voltage               |                                       |                          |                        | 2    |     |      | V    |
| Vit  | Low-level input voltage                | · · ·                                 |                          |                        |      |     | 0.8  | V    |
| Vik  | Input clamp voltage                    |                                       | Vcc - MIN,               | lı – –18 mA            |      |     | -1.2 | V    |
| Vau  | High-level output voltage              | QA thru QH                            | V <sub>CC</sub> = MIN,   | V <sub>IH</sub> = 2 V, | 2.4  | 3,2 |      |      |
| ∨он  | rightever burbur vortage               | QA' or QH'                            | V <sub>IL</sub> = 0.8 V. | IOH = MAX              | 2.7  | 3.4 |      | V V  |
| νοι  | l nw-level output voltage              | · · · · · · · · · · · · · · · · · · · | Vcc = MIN,               | VIH = 2 V,             |      |     |      | V    |
| • OL | enwicker darpar vortrige               |                                       | V <sub>IL</sub> = 0.8 V, | IOL = MAX              |      |     | 0.5  | V V  |
| lozu | Off-state output current,              | Q <sub>A</sub> thru Q <sub>H</sub>    | VCC - MAX,               | V <sub>IH</sub> = 2 V, |      |     |      |      |
| lozн | high-level voltage applied             |                                       | Vo = 2.4 V               |                        |      |     | 100  | μA   |
| IOZL | Off-state output current,              | Out three Out                         | V <sub>CC</sub> = MAX.   | V <sub>IH</sub> = 2 V, | T    |     |      | ſ .  |
| 102L | low-level voltage applied              | Ω <sub>A</sub> thru Δ <sub>H</sub>    | V <sub>O</sub> = 0.5 V   |                        |      |     | 250  | μA   |
| (j   | Input current at maximum input voltage |                                       | V <sub>CC</sub> = MAX,   | Vj ~ 5.5 V             |      |     | 1    | mΑ   |
| цн   | High-level input current               | A thru H, S0, S1                      |                          | V - 27.V               |      |     | 100  |      |
| H    |                                        | Any other                             | VCC = MAX,               | v   = 2.7 V            |      |     | 50   | 1 µA |
|      |                                        | CLK or CLR                            |                          |                        |      |     | -2   | mA   |
| 4E   | Low-level input current                | S0, S1                                | VCC MAX,                 | Vi = 0.5 V             |      |     | -500 | μA   |
|      |                                        | Any other                             |                          |                        |      |     | -250 | μА   |
| tos  | Short-circuit output current §         | Q <sub>A</sub> thru Q <sub>H</sub>    | Vac - MAY                |                        | -40  |     | -100 |      |
| -05  | Short Excer Carpar Contents            | QA or QH                              | V <sub>CC</sub> = MAX    |                        | -20  |     | -100 | mA   |
| 'cc' | Supply current                         |                                       | V <sub>CC</sub> = MAX    |                        |      | 140 | 225  | mA   |

<sup>†</sup>For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

<sup>‡</sup>All typical values are at V<sub>CC</sub> = 5 V, T<sub>A</sub> = 25 C.

 $\frac{1}{2}$  Not more than one output should be shorted at a time and duration of the short circuit should not exceed one second.

### switching characteristics, VCC = 5 V, TA = $25^{\circ}$ C

| PARAMETER¶       | FROM<br>(INPUT)        | TO<br>(OUTPŲT)                     | TEST CONDITIONS                         | MIN | түр | MAX | דואט |
|------------------|------------------------|------------------------------------|-----------------------------------------|-----|-----|-----|------|
| f <sub>max</sub> |                        |                                    | See Note 2                              | 50  | 70  |     | MHz  |
| <sup>t</sup> PLH | CLK                    |                                    | $R_{1} = 1 k\Omega, C_{1} = 15 pF$      |     | 12  | 20  |      |
| 1PHL             |                        |                                    |                                         |     | 13  | 20  | ns   |
| <sup>t</sup> PHL | CLR                    | QA' or QH'                         |                                         |     | 14  | 21  | ns   |
| TPLH             | CLK                    | Q <sub>A</sub> thru Q <sub>H</sub> |                                         |     | 15  | 21  |      |
| <sup>t</sup> PHL |                        | CA IND CH                          |                                         |     | 15  | 21  | ns   |
| tPHL             |                        | Q <sub>A</sub> thru Q <sub>H</sub> | $R_{L} = 280 \ \Omega, C_{L} = 45 \ pF$ |     | 16  | 24  | ns   |
| ФZH              | <u>G</u> 1, <u>G</u> 2 | Q <sub>A</sub> thru Q <sub>H</sub> |                                         |     | 10  | 18  |      |
| <sup>t</sup> PZL | ]                      |                                    |                                         |     | 12  | 18  | ns   |
| <sup>t</sup> PHZ | Ğ1, Ğ2                 | Q <sub>A</sub> thru Q <sub>H</sub> | $R_{L} = 280 \Omega, C_{L} = 5 pF$      |     | 7   | 12  |      |
| <sup>t</sup> PLZ |                        |                                    |                                         |     | 7   | 12  | ns   |

fmax = maximum clock frequency

 $t_{\text{PLH}}$  = Propagation delay time, low-to-high-level output

 $t_{HHL}$  = Propagation delay time, high-to-low-level output

 $t_{PZH}$  = output enable time to high level

 $tp_{\overline{Z}I}$  = output enable time to low level

 $t_{PHZ}$  = output disable time from high level

 $r_{PLZ}^{(1)}$  = output disable time from low level NOTE 2: For testing f<sub>max</sub>, all outputs are loaded simultaneously, each with C<sub>L</sub> and R<sub>L</sub> as specified for the propagation times Load circuits and voltage waveforms are shown in Section 1.



#### **IMPORTANT NOTICE**

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any semiconductor product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

TI warrants performance of its semiconductor products and related software to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

Certain applications using semiconductor products may involve potential risks of death, personal injury, or severe property or environmental damage ("Critical Applications").

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS.

Inclusion of TI products in such applications is understood to be fully at the risk of the customer. Use of TI products in such applications requires the written approval of an appropriate TI officer. Questions concerning potential risk applications should be directed to TI through a local SC sales office.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards should be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or services described herein. Nor does TI warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used.

Copyright © 1996, Texas Instruments Incorporated