SDLS153

SN54LS292, SN54LS294, SN74LS292, SN74LS294 PROGRAMMABLE FREQUENCY DIVIDERS/DIGITAL TIMERS

- Count Divider Chain .
- Digitally Programmable from 2² to 2ⁿ (n = 31 for 'LS292, n = 15 for 'LS294)
- Useable Frequency Range from DC to 30 MHz
- **Easily Expandable** •
- Applications
 - Frequency Division
 - Digital Timing
- description

These programmable frequency dividers/digital timers contain 31 flip-flops plus 30 gates ('LS292) or 15 flip-

Accessive to a RC 12117 (defined)

flops plus 29 gates ('LS294) on a single chip. The count modulo is under digital control of the inputs provided. Both types feature an active-low clear input to initialize

the state of all flip-flops. To facilitate incoming inspection, test points are provided (TP1, TP2, and TP3 on the 'LS292 and TP on the 'LS294). These test points are not intended to drive system loads. Both types feature two clock inputs; either one may be used for clock gating. (See the function table below.)

A brief look at the digital timing capabilities of the 'LS292 will show that with a 1-MHz input frequency, programming for 2¹⁰ will give a period of 1.024 ms, and 2²⁰ will give a period of 1.05 sec, 2²⁶ will give a period of 1.12 min, and 231 will give a period of 35.79 min.

These devices are easily cascadable giving limitless possibilities to timing delays that can be achieved.

FUNCTION TABLE

CLEAR	CLK 1	CLK 2	Q OUTPUT MODE
L	×	x	Cleared to L
н	t t	L.	Count
н	L	t	Count
н	н	х	Inhibit
н	x	н	Inhibit

D2628, JANUARY 1981 - REVISED MARCH 1988

PRODUCTION DATA documents contain information current as af publication date. Products conform to specifications par the terms of Taxas instruments standard warranty. Production processing does not necessarily include testing of all parameters.

schematics of inputs and outputs

operation

6/F/2/6 17 18

The functional block diagram shows that the count modulo is controlled by an X/Y decoder connected to the mode control inputs of several flip-flops. These flip flops with mode controls each have a "D" input connected to the parallel clock line and a "T" input driven by the preceding stage. The parallel clock frequency is always the input frequency divided by four.

The X/Y decoder output selected by the programming inputs goes low. While a mode control is low, the "D" input of that flip-flop is enabled, and the signal from the parallel clock line ($f_{in} \div 4$) is passed to the "T" input of the following stage. All the other mode controls are high enabling the "T" inputs and causing each flip-flop in turn to divide by two.

These symbols are in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12. Pin numbers shown are for J. N, and W packages.

Pin numbers shown are for J, N, and W packages.

logic diagram (positive logic)

.

. . ____

Pin numbers shown are for J, N, and W packages.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, VCC (see Note 1)	· · · · · · · · · · · · · · · · · · ·	7 V
Input voltage		7 V
Operating free-air temperature range	SN54LS292, SN54LS294	25°C
	SN74LS292, SN74LS294	70°C
Storage temperature range	65°C to 1	50°C

NOTE 1: Voltage values are with respect to network ground terminal.

TEXAS TEXAS TEXAS 75265

1 - .

÷

recommended operating conditions

····

				· · ·					
		, <u></u> , <u></u> _,		SN54LS'		SN74LS'			
			MIN	NOM	MAX	MIN	NOM	MAX	UNIT
Vcc	Supply voltage		4.5	5	5.5	4.75	5	5.25	V
VIH	High-level input voltage		2			2			V
VIL	Low-level input voltage				0.7			0.8	V
юн	High-level output current (Q only)				- 1.2			- 1.2	mA
IOL	Low-level output current (Q only)	•			12			24	mA
fclock	Clock frequency		0		30	0		30	MHz
ŧw	Duration of clock input pulse		16			16			ns
		'LS292	55			55			
^t w	Duration of clear pulse	'LS294	35			35			ns
t _{su}	Clear inactive-state setup time	· _ · · · · · · · · · · · · · · · · · ·	15			15			ns
TA	Operating free-sir temperature		- 55		125	0		70	°C

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

					SN54L	57		UNIT		
PARAMETER		TEST CONDITIONS [†]			TYP [‡]	MAX	MIN	TYP‡	MAX	UNIT
VIK		V _{CC} = MIN, I _I = -18 mA				- 1.5			~ 1.5	V
Voн	٥	$V_{CC} = MIN, V_{IH} = 2 V,$ $V_{IL} = MAX$	l _{OH} = - 1.2 mA,	2.4	3.4		2.4	3.4		v
	a	V _{CC} = MIN,	I _{OL} = 12 mA	1	0.25	0.4		0.25	0.4	
VOL	Q	V _{IH} = 2 V,	I _{OL} = 24 mA					0.35	0.5	V
	тр¶	VIL = MAX	loL = 0.5 mA		-			0.25	0.4	
I _I	•	$V_{CC} = MAX, V_1 = 7V$		1 -		0.1			0.1	mΑ
ЧH	······	$V_{CC} = MAX$, $V_1 = 2.7 V$			-	20			20	μA
	CLK1, CLK2	V V _{CC} = MAX, V ₁ = 0.4 V				- 0.8			- 0.8	лΑ
ιŧΓ	All others	VCC - MAX, 01 - 0.4 0		F		- 0.4		-	- 0.4	nA.
loss	٥	V _{CC} = MAX		- 30		- 130	- 30		- 130	лΑ
1	'LS292	V _{CC} = MAX, All inputs grou	unded,	-	40	75		40	75	mA
'cc	'LS294	All outputs open			30	50		30	50	

[†] For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

¹ All typical values are at V_{CC} = 5 V, $T_A = 25$ °C,

§ The duration of the short-circuit should not exceed one second.

The TP output or outputs are not intended to drive external loads but are solely provided for test points.

۰.,

switching characteristics, VCC - 5 V, TA - 25 °C, RL - 667 Ω, CL - 45 pF (see Figure 1)

o.o.	FROM	то		'LS292			'LS294			
PARAMETERT	(INPUT)	(OUTPUT)	TEST CONDITIONS	MIN	ТҮР	MAX	MIN	TYP	MAX	UNIT
f _{max}				30	50		30	50		MHz
^t ₽LH	CLK1 or 2	۵	Modulo set at 22, A thru E = LLLHL ('LS292)		55	90		65	90	ns
^t ₽HL		۵	A thru D = LLHL ('LS294)		80	120		80	120	ns
^t PHL .	CLR	° Q			85	130		35	65	ns

[†]f_{MAX} = maximum clock frequency
tp_{LH} = Propagation delay time, low-to-high-level output
tp_{HL} - Propagation delay time, high-to-low-level output
NOTE 2: Load circuits and voltage waveforms are shown in Section 1. To be used on TP outputs only.

PR	ROGI	RAN	5Młł	IG –			FI	REQUENC	Y DIVISION	I		
	INPUTS		Q		TP1	TP1		TP2	TP3			
E	D	С	8	Α	BINARY	DECIMAL	BINARY D	DECIMAL	BINARY	DECIMAL	BINARY	DECIMAL
L	L	L	L	L	Inhibit	Inhibit	Inhibit	Inhibit	Inhibit	Inhibit	Inhibit	Inhibit
L	L	L	L	н	Inhibit	Inhibit	Inhibit	Inhibit	Inhibit	Inhibit	Inhibit	Inhibit
L	L	L	Н	L	2 ²	4	2 ⁹	512	217	131,072	224	16,777,216
L	L	L	н	н	23	8	29	512	217	131,072	224	16,777,216
F	L	н	L	Ł	24	16	29	512	217	131.072	224	16,777,216
L	Ļ	н	L	н	2 ⁵	32	2 ⁹	512	217	131,072	224	16,777,216
L	L	н	н	L	26	64	2 ⁹	512	217	131,072	224	16,777,216
ł,	L	н	н	н	27	128	29 29	512	217	131,072	2 ²⁴	16,777,216
L	н	L	L	Ľ	28	256	29	512	217	131,072	22	4
L	н	٤	L	н	2 ⁹	512	2 ⁹	512	217	131,072	22	4
L	н	ι	н	L	210	1,024	29	512	217	131,072	24	16
L	н	L	н	н	2 ¹¹	2,048	2 ⁹	512	2 ¹⁷	131,072	24	16
L	н	н	L	L	212	4,096	2 ⁹	512	217	131,072	26	64
L	н	н	L	н	2 ¹³	8,192	29	512	217	131,072	26	64
L	н	н	н	L	214	16,384	29	512	Disable	d Low	28	256
L	н	н	н	н	215	32,768	29	512	Disabled	d Low	28	256
н	L	Ļ	L	L	216	65,536	2 ⁹	512	23	8	210	1,024
н	Ł	i.	L	н	217	131,072	2 ⁹	512	23	8	210	1,024
н	L	L	н	L	2 ¹⁸	262,144	2 ⁹	512	25	32	212	4,096
н	L	L	н	н	219	524,288	2 ⁹	512	25	32	212	4,096
н	L	н	L	L	220	1,048,576	29	512	27	128	214	16,384
н	L	н	L	н	2 ²¹	2,097,152	29	512	27	128	214	16,384
н	L	н	н	L	2 ²²	4,194,304	Disabled Low	1	29	512	216	65,536
н	L	н	н	н	2 ²³	8,388,608	Disabled Low	,	29	512	216	65,536
н	н	L	L	L	2 ²⁴	16,777,216	2 ³	8	211	2,048	218	262,144
н	н	L	L	н	225	33,554,432	2 ³	8	211	2,048	218	262,144
н	н	L	н	L	226	67,108,864	25	32	213	8,192	220	1,048,576
Н	н	L	н	н	227	134,217,728	25	32	213	8,192	220	1,048,576
н	н	н	L.	L	2 ²⁸	268,435,456	27	128	215	32,768	222	4,194,304
н	н	н	Ļ	н	2 ²⁹	536,870,912	27	128	215	32,768	222	4,194,304
н	н	н	н	L	₂ 30	1,073,741,824	2 ⁹	512	217	131,072	2 ²⁴	16,777,216
н	н	н	н	н	231	2,147,483,648	29	512	217	131,072	224	16,777,216

'LS292 FUNCTION TABLE

POST OFFICE BOX 6 1,012 - DALLAS TEXAS 75265

					FREQUENC	Y DIVISION	
PE	OGRAMM	ING INPUT	5		٥	т	P
D	С	8	A	BINARY	DECIMAL	BINARY	DECIMAL
L	L	L	L	Inhibit	Inhibit	Inhibit	Inhibit
L	L	L	н	Inhibit	Inhibit	Inhibit	Inhibit
L	L	н	L	22	4	2 ⁹	512
- L	- Լ	н	H	23	8	2 ⁹	512
 L	H	L	L	24	16	29	512
L	н	L	н	25	32	2 ⁹	512
L	н	н	L	2 ⁶	64	2 ⁹	512
L	н	н	н	27	128	Disabl	ed Low
н	L	Ļ	L	2 ⁸	256	22	4
н	L	L	н	29	512	2 ³	8
н	L	н	L	210	1,024	24	16
н	Ĺ	н	н	211	2,048	25	32
н	н	L	L	212	4,096	2 ⁶	64
н	н	L	н	213	8,192	27	128
н	н	н	L	214	16,384	2 ⁸	256
н	н	н	н	215	32,768	29	512

LS294 FUNCTION TABLE

switching loads

.

'LS292 and 'LS294 timing diagram

POST OFFICE BOX 655012 + DAFLAS, TEXAS 75265

ź

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any semiconductor product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

TI warrants performance of its semiconductor products and related software to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

Certain applications using semiconductor products may involve potential risks of death, personal injury, or severe property or environmental damage ("Critical Applications").

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS.

Inclusion of TI products in such applications is understood to be fully at the risk of the customer. Use of TI products in such applications requires the written approval of an appropriate TI officer. Questions concerning potential risk applications should be directed to TI through a local SC sales office.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards should be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or services described herein. Nor does TI warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used.

Copyright © 1996, Texas Instruments Incorporated