SN54LS280, SN54S280, SN74LS280, SN74S280 9-BIT ODD/EVEN PARITY GENERATORS/CHECKERS

SDLS152

- Generates Either Odd or Even Parity for Nine Data Lines
- Cascadable for n-Bits
- Can Be Used to Upgrade Existing Systems using MSI Parity Circuits
- Typical Data-to-Output Delay of Only 14 ns for 'S280 and 33 ns for 'LS280
- Typical Power Dissipation: 'LS280 . . . 80 mW 'S280 . . . 335 mW

FUNCTION TABLE

NUMBER OF INPUTS A	OUTPUTS						
THRU I THAT ARE HIGH	Σ Ενεν	ΣODD					
0, 2, 4, 6, 8	н	L					
1, 3, 5, 7, 9	<u></u> ц н						

H = high level, L = low level

logic symbol[†]

DECEMBER 1972 - REVISED MARCH 1988

SN54LS280, SN54S280 ... FK PACKAGE (TOP VIEW)

NC - No internal connection

¹This symbol is in accordance with ANSI/IEEE Std. 91-1984 and IEC Publication 617-12.

Pin numbers shown are for D. J. N. and W packages.

description

These universal, monolithic, nine-bit parity generators/checkers utilize Schottky-clamped TTL high-performance circuitry and feature odd/even outputs to faciliate operation of either odd or even parity application. The word-length capability is easily expanded by cascading as shown under typical application data.

Series 54LS/74LS and Series 54S/74S parity generators/checkers offer the designer a trade-off between reduced power consumption and high performance. These devices can be used to upgrade the performance of most systems utilizing the '180 parity generator/checker. Although the 'LS280 and 'S280 are implemented without expander inputs, the corresponding function is provided by the availability of an input at pin 4 and the absence of any internal connection at pin 3. This permits the 'LS280 and 'S280 to be substituted for the '180 in existing designs to produce an identical function even if 'LS280's and 'S280's are mixed with existing '180's.

These devices are fully compatible with most other TTL circuits. All 'LS280 and 'S280 inputs are buffered to lower the drive requirements to one Series 54LS/74LS or Series 54S/74S standard load, respectively.

SN54LS280, SN54S280, SN74LS280, SN74S280 9 Bit odd/even parity generators/checkers

 Signed voltage:
 20200

 Signed voltage:
 5.5 V

 Operating free-air temperature range:
 SN54'

 SN74'
 0°C to 70°C

 Storage temperature range
 - 65°C to 150°C

 NOTE 1:
 Voltage values are with respect to network ground terminal.

SN54LS280, SN74LS280 9-BIT ODD/EVEN PARITY GENERATORS/CHECKERS

	SI	SN54LS280			SN74LS280			
	MIN	MIN NOM MAX		MIN	NOM	MAX	UNIT	
V _{CC} Supply voltage	4.5	5	5.5	4.75	5	5.25	V	
VIH High-level input voltage	2			2			v	
VIL Low-level input voltage			0.7			0.8	V	
IOH High-level output current			- 0.4			- 0.4	mΑ	
IOL Low-level output current			4			. 8	mA	
TA Operating free-sir temperature	- 55		125	0		70	°C	

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

			S	N54LS2	80	S	80	UNIT		
PARAMETER		TEST CONDIT	TIONS	MIN	TYP‡	MAX	MIN	TYP‡	MAX	0.411
Vik	V _{CC} = MIN,	1 ₁ = – 18 mA				- 1.5			- 1.5	V
Voit	V _{CC} = MIN, V _{1L} = MAX,	V _{IH} = 2 V, I _{OH} = - 0.4 m	A	2.5	3.4		2.7	3.4		v
	Vcc = MIN,	V _{IH} = 2 V,	1 _{0L} = 4 mA		0.25	0.4		0.25	0.4	
VOL	VIL = MAX		1 _{0L} = 8 mA				_	0.35	0.5	
L ₁	V _{CC} = MAX,	Vi = 7 V				0.1			0.1	mA
Чн	V _{CC} = MAX,	V ₁ = 2.7 V				20			20	μА
111	VCC = MAX,	VI = 0.4 V				- 0.4			- 0.4	mA
IOSS	VCC - MAX			- 20		- 100	- 20		- 100	mA
lcc	V _{CC} = MAX,	See Note 2			16	27	_	16	27	mA

[†] For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

t All typical values are at V_{CC} = 5 V, $T_A = 25^{\circ}$ C. Not more than one output should be shorted at a time and duration of the short circuit should not exceed one second.

NOTE 2 $-I_{CC}$ is measured with all inputs grounded and all outputs open.

switching characteristics, V_{CC} = 5 V, T_A = 25°C

PARAMETER	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	MIN	TYP	МАХ	UNIT
tplh	Data Σ Even $C_L = 15 pF, R_L = 2 k\Omega,$		33	50	- ns		
1PHL		Inputs not under test at 0 V,	29	45			
tPLH Data 21	∑ Odd	See Note 3		23	35	ns	
	Data	_ 000			31	50	

* tPLH - probagation delay time, low-to-high level output, tPHL - propagation delay time, high to-low-level output NOTE 3. Load circuits and voltage waveforms are shown in Section 1.

SN54S280, SN74S280 **9 BIT ODD/EVEN PARITY GENERATORS/CHECKERS**

recommended operating conditions

	S S	SN54S280			SN74S280		
	MIN	NOM	MAX	MIN	NOM	MAX	UNIT
Supply voltage, VCC	4.5	5	5.5	4.75	5	5.25	V
High-level output current, IOH			-1			-1	mA
Low-level output current, IOL			20			20	mA
Operating free-air temperature, TA	-55		125	0		70	°C

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

	PARAMETER	TEST CONDITION	MIN	түр‡	MAX	UNIT	
VIH	High level input voltage			2			V
VIL	Low-level input voltage					0.8	
VIK	Input clamp voltage	$V_{CC} = MIN$, $I_I = -18 \text{ mA}$			-1.2	V_	
		$V_{CC} = MIN, V_{1H} = 2V,$	SN54S'	2.5	3.4		l v
⊻он	igh-level output voltage	VIL=0.8V. IOH=-1 mA	SN745'	2.7	3.4		Ľ.
VOL		V _{CC} = MIN, V _{IH} = 2 V,				0.5	V
	Low-level output voltage	VIL = 0.8 V, IOL = 20 mA				0.0	
t _l	Input current at maximum input voltage	V _{CC} = MAX, V ₁ = 5.6 V			1	mA	
ЧΗ	High-level input current	V _{CC} - MAX, V ₁ = 2.7 V				50	μΑ
41	Low-level input current	V _{CC} = MAX, V _I = 0.5 V				-2	mΑ
10S	Short-circuit output current §	V _{CC} = MAX		- 40		-100	mA
			SN545280		67	99	
		V _{CC} = MAX, See Note 2	SN74S280		67	105	T mA
icc	Supply current	V _{CC} = MAX, T _A = 125 C, See Note 2	SN54S280N			94	mA

¹ For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

 ‡ All typical values are at V_{CC} = 5 V, T_A = 25 C $^{\$}$ Not more than one output should be shorted at a time and duration of the short circuit should not exceed one second.

NOTE 21 $T_{\mbox{CC}}$ is measured with all inputs grounded and all outputs open.

switching characteristics, V_{CC} = 5 V, T_A = 25°C

PARAMETER	FROM (INPUT)	то (оuтрuт)	TEST CONDITIONS	MIN	TYP	мах	UNIT
tplH		Data Σ Even $C_L = 15 pF$, $R_L = 280 \Omega$,			14	21	пѕ
PHL	Data		2 E Ven		11.5	18	L
^t PLH	Data	ΣOdd	See Note 3		14	21	ns
^t PHL	Data				11.5	18	<u> </u>

 $\P_{t_{\mathsf{PLH}}}$ = propagation delay time, low-to-high-level output: t_{PLH} = propagation delay time, high-to-low-level output NOTE 3: Load circuits and voltage waveforms are shown in Section 1.

ς.

SN54LS280, SN54S280, SN74LS280, SN74S280 9-BIT ODD/EVEN PARITY GENERATORS/CHECKERS

logic diagram (positive logic)

Pin numbers shown are for D, J, N, and W packages.

TEXAS INSTRUCTENTS HONL OFFICE BOX 655012 + DALLAS, TEXAS 75265

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any semiconductor product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

TI warrants performance of its semiconductor products and related software to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

Certain applications using semiconductor products may involve potential risks of death, personal injury, or severe property or environmental damage ("Critical Applications").

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS.

Inclusion of TI products in such applications is understood to be fully at the risk of the customer. Use of TI products in such applications requires the written approval of an appropriate TI officer. Questions concerning potential risk applications should be directed to TI through a local SC sales office.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards should be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or services described herein. Nor does TI warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used.

Copyright © 1996, Texas Instruments Incorporated