SDLS127

DECEMBER 1972 - REVISED MARCH 1988

## TTL MSI PARALLEL-IN SERIAL-OUT REGISTERS for application as

### Dual-Source, Parallel-To-Serial Converter

## description

These monolithic shift registers which utilize transistor-transistor logic (TTL) circuits in the familiar Series 54/74 configuration, are composed of four R-S master-slave flip-flops, four AND-OR-INVERT gates, and four inverter-drivers. Internal interconnections of these functions provide a versatile register which performs right-shift operations as a serial-in, serial-out register or as a dual-source, parallel-to-serial converter. A number of these registers may be connected in series to form an n-bit register.

All flip-flops are simultaneously set to a low output level by applying a high-level voltage to the clear input while the internal presets are inactive (high). See the preset function table below. Clearing is independent of the level of the clock input,

The register may be parallel loaded by using the clear input in conjunction with the preset inputs. After clearing all stages to low output levels, data to be loaded is applied to either the P1 or P2 inputs of each register stage (A, B, C, and D) with the corresponding preset enable input, PE1 or PE2, high. Presetting, like clearing, is independent of the level of the clock input.

#### Serial-In Serial-Out Register

#### SN5494 ... J OR W PACKAGE SN7494 ... N PACKAGE

| (   | то         | P VIE | <b>N</b> ):- |
|-----|------------|-------|--------------|
| P1A | d۲         | U16   | ] P2A        |
| P1B |            | 15    | PE2          |
| P1C | Ľ٩         | 14    | P28          |
| P10 | ⊡₄         | 13    | ] P2C        |
| Vcc | <b>G</b> 6 | 12    | GND          |
| PE1 | []e        | 11    | P2D          |
| SER | ٦,         | 10    | ] CLR        |
| CLK | Пв         | je    | ] Qn         |

logic symbol<sup>†</sup>



<sup>†</sup>This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

DECISTED EUNOTION TADI C

Transfer of information to the outputs occurs on the positive-going edge of the clock pulse. The proper information must be setup at the R-S inputs of each flip-flop prior to the rising edge of the clock input waveform. The serial input provides this information for the first flip-flop, while the outputs of the subsequent flip-flops provide information for the remaining R-S inputs. The clear input must be at a low level and the internal presets must be inactive (high) when clocking occurs.

### PRESET FUNCTION TABLE (BIT A. TYPICAL OF ALL)

PRES PE1 P L L X X H

| IT A | , TYP | ICAL | OF ALL)      |          |      |       |      | ncu   | ISIER F | UNCTION | TABLE           |                 |       |                 |
|------|-------|------|--------------|----------|------|-------|------|-------|---------|---------|-----------------|-----------------|-------|-----------------|
| SET  | INPL  | ITS  | INTERNAL     | INTI     | ERNA | LPRES | SETS |       | INPUTS  |         | INTER           | NAL OU          | TPUTS | OUTPUT          |
| 21A  | PE2   | P2A  | PRESET A     | A        | В    | С     | D    | CLEAR | CLOCK   | SERIAL  | QA              | 0B              | QC    | a <sub>D</sub>  |
| Х    | L     | х    | H (inactive) | н        | н    | н     | н    | н     | х       | х       | L               | L               | L     | L               |
| х    | х     | L    | H (inactive) | L        | L    | L     | L    | Ĺι    | х       | х       | н               | н               | н     | н               |
| L    | Ł     | х    | H (inactive) | н        | н    | н     | н    | L     | L       | х       | 0 <sub>A0</sub> | 0 <sub>80</sub> | QC0   | 0 <sub>D0</sub> |
| L    | х     | L.   | H (inactive) | <u>ι</u> | н    | L     | н    | , ι   | L       | х       | н               | a <sub>B0</sub> | н     | a <sub>D0</sub> |
| н    | х     | х    | L (active)   | н        | H    | н     | н    | L     | t       | Н       | н               | QAn             | QBn   | acn             |
| х    | н     | н    | L (active)   | н        | н    | н     | н    | L     | t       | L       | L               | QAn             | QBn   |                 |

H = high level (steady state), L = low level (steady state), X = irrelevant,  $\uparrow$  = transition from low to high level

 $Q_{A0}$ ,  $Q_{B0}$ ,  $Q_{C0}$ ,  $Q_{D0}$  = the level of  $Q_A$ ,  $Q_B$ ,  $Q_C$ , or  $Q_D$ , respectively, before the indicated steady-state input conditions were established.  $Q_{An}$ ,  $Q_{Bn}$ ,  $Q_{Cn}$  = the level of  $Q_A$ ,  $Q_B$ , or  $Q_C$ , respectively, before the most-recent  $\dagger$  transition of the clock.

# absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

| Supply voltage, V <sub>CC</sub> (see Note 1)                       |     | <br>  |  |  |   |   |   |  | <br><i>T</i> V  | 1        |
|--------------------------------------------------------------------|-----|-------|--|--|---|---|---|--|-----------------|----------|
| Input voltage (see Note 2)                                         |     | <br>  |  |  |   |   |   |  | <br>5.5 \       | <b>v</b> |
| Operating free-air temperature range: SN5494 Circuits              |     | <br>  |  |  |   |   |   |  | –55°C to 125°   | С        |
| SN7494 Circuits                                                    |     | <br>  |  |  |   |   |   |  | <br>0°C to 70°0 | 0        |
| Storage temperature range                                          |     | <br>• |  |  | , | - | - |  | -65°C to 150°   | С        |
| NOTES: 1. Voltage values are with respect to network ground termin | al. |       |  |  |   | • |   |  |                 |          |

2. Input voltage must be zero or positive with respect to network ground terminal.

PRODUCTION DATA documents contain information current as of publication date. Products canform to specifications per the terms of Taxas Instruments standard werrenty. Production processing does not necessarily include texting of all parameters.

. :





# schematics of inputs and output

.





# SN5494, SN7494 4 BIT SHIFT REGISTERS

# recommended operating conditions

|                                    |                                       |     | SN5494 | 4          |      | SN749 | 4    | UNIT |
|------------------------------------|---------------------------------------|-----|--------|------------|------|-------|------|------|
|                                    |                                       | MIN | NOM    | MAX        | MIN  | NOM   | MAX  |      |
| Supply voltage, VCC                |                                       | 4.5 | 5      | 5.5        | 4.75 | 5     | 5.25 | v    |
| High-level output current, IOH     |                                       |     |        | 400        |      |       | -400 | μA   |
| Low-level output current, IOL      |                                       |     |        | 16         | -    |       | 16   | mΑ   |
| Width of clock pulse, tw(clock)    |                                       | 35  |        | . <u> </u> | 35   |       |      | ns   |
| Width of clear pulse, tw(clear)    |                                       | 30  |        | - h.       | 30   |       |      | ns   |
| Width of preset pulse, tw(preset)  | · · · · · · · · · · · · · · · · · · · | 30  |        |            | 30   |       |      | ns   |
| Satua tima t                       | High-level data                       |     |        |            | 35   |       | _    | ns   |
| Setup time, t <sub>SU</sub>        | Low-level data                        | 25  |        |            | 25   |       |      | 112  |
| Hold time, th                      |                                       | 0   |        |            | 0    |       |      | ns   |
| Operating free-air temperature, TA |                                       | -55 |        | 125        | 0    | ····  | 70   | °C   |

# electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

|     | DADANETCO                  |                 | TEAT CONDUCTOR                                                                                    | ļ   | SN5494 | 1    |          | UNIT |      |      |
|-----|----------------------------|-----------------|---------------------------------------------------------------------------------------------------|-----|--------|------|----------|------|------|------|
|     | PARAMETER                  | l.              | TEST CONDITIONS <sup>†</sup>                                                                      | MIN | ТҮР‡   | MAX  | MIN      | TYPİ | MAX  | UNIT |
| VIH | High-level input voltage   |                 |                                                                                                   | 2   |        |      | 2        |      |      | v    |
| VIL | Low-level input voltage    |                 |                                                                                                   |     |        | 0.8  |          |      | 0.8  | V    |
| ∨он | High-level output voltage  |                 | $V_{CC} = MIN, V_{IH} = 2 V,$<br>$V_{IL} = 0.8 V, I_{OH} = -400 \mu A$                            | 2.4 | 3.5    |      | 2.4      | 3.5  |      | v    |
| VOL | Low-level output voltage   |                 | V <sub>CC</sub> = MIN, V <sub>IH</sub> = 2 V,<br>V <sub>IL</sub> = 0.8 V, I <sub>OL</sub> = 16 mA |     | 0.2    | 0.4  |          | 0.2  | 0.4  | v    |
| 4   | Input current at maximum   | n input voltage | V <sub>CC</sub> = MAX, V <sub>1</sub> = 5.5 V                                                     | 1   |        | 1    |          |      | 1    | mA   |
| 1 . |                            | Presets 1 and 2 |                                                                                                   | 1   |        | 160  | <u> </u> |      | 160  |      |
| ЧН  | High-level input current   | Other inputs    | $-V_{CC} = MAX, V_1 = 2.4 V$                                                                      |     |        | 40   |          |      | 40   | μΑ   |
|     | ·····                      | Presets 1 and 2 |                                                                                                   | 1   |        | -6.4 |          |      | -6.4 |      |
| ΊL  | Low-level input current    | Other inputs    | $V_{CC} = MAX, V_1 = 0.4 V$                                                                       |     |        | -1.6 |          |      | -1.6 | mA   |
| los | Short-circuit output curre | nt <sup>§</sup> | V <sub>CC</sub> = MAX                                                                             | -20 |        | 57   | -18      |      | -57  | mA   |
| 1cc | Supply current             |                 | V <sub>CC</sub> = MAX, See Note 3                                                                 | 1   | 35     | 50   | 1        | 35   | 58   | mA   |

 $\frac{1}{2}$  For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

<sup>‡</sup>All typical values are at  $V_{CC} = 5 V$ ,  $T_A = 25^{\circ}C$ .

SNot more than one output should be shorted at a time.

NOTE 3: ICC is measured with the outputs open, clear grounded following momentary application of 4.5 V, both preset-enable inputs grounded, and all other inputs at 4.5 V.

# switching characteristics, $V_{CC} = 5 V$ , $T_A = 25 °C$

|                  | PARAMETER                                                       | TEST CONDITIONS                                 | MIN | ТҮР | MAX | UNIT |
|------------------|-----------------------------------------------------------------|-------------------------------------------------|-----|-----|-----|------|
| fmax             | Maximum clock frequency                                         |                                                 | 10  |     |     | MHz  |
| <sup>t</sup> PLH | Propagation delay time, low-to-high-level<br>output from clock  |                                                 |     | 25  | 40  | ns   |
| <sup>t</sup> PHL | Propagation delay time, high-to-low-level<br>output from clock  | C <sub>L</sub> = 15 pF, R <sub>L</sub> = 400 Ω, |     | 25  | 40  | ns   |
| <sup>t</sup> PLH | Propagation delay time, low-to-high level<br>output from preset | See Note 4                                      |     |     | 35  | ns   |
| <sup>t</sup> PLH | Propagation delay time, high-to-low-level<br>output from clear  |                                                 |     |     | 40  | ns   |

NOTE 4: Load circuits and voltage waveforms are shown in Section 1.



## **IMPORTANT NOTICE**

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any semiconductor product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

TI warrants performance of its semiconductor products and related software to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

Certain applications using semiconductor products may involve potential risks of death, personal injury, or severe property or environmental damage ("Critical Applications").

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS.

Inclusion of TI products in such applications is understood to be fully at the risk of the customer. Use of TI products in such applications requires the written approval of an appropriate TI officer. Questions concerning potential risk applications should be directed to TI through a local SC sales office.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards should be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or services described herein. Nor does TI warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used.

Copyright © 1996, Texas Instruments Incorporated