SN5490A, SN5492A, SN5493A, SN54LS90, SN54LS92, SN54LS93, SN7490A, SN7492A, SN7493A, SN74LS90, SN74LS92, SN74LS93 DECADE, DIVIDE-BY-TWELVE AND BINARY COUNTERS MARCH 1974-REVISED MARCH 1968

SDLS125

'90A, 'LS90 Decade	Counters	SN5490A, SN54LS90 J OR W PACKAGE SN7490A N PACKAGE				
'92A, 'LS92 Divide l	By-Twelve Counters	SN74LS90 D OR N PACKAGE				
′93A, ′LS93 4-Blt Bi	nary Counters	(TOP VIEW)				
TYPES	TYPICAL POWER DISSIPATION	CKB $\begin{bmatrix} 1 \\ 1 \\ 2 \\ 13 \end{bmatrix}$ NC R0(1) $\begin{bmatrix} 2 \\ 13 \\ 2 \\ 12 \\ 0A \\ 0C \\ 4 \\ 11 \\ 0D \end{bmatrix}$				
'90A	145 mW					
'92A, '93A	130 mW					
'LS90, 'LS92, 'LS93	45 mW	R9(1) ∐6 9∐ OB R9(2) ∐7 8∐ OC				

description

-

Each of these monolithic counters contains four master-slave flip-flops and additional gating to provide a divide-by-two counter and a three-stage binary counter for which the count cycle length is divide-by-five for the '90A and 'LS90, divide-by-six for the '92A and 'LS92, and the divide-by-eight for the '93A and 'LS93.

All of these counters have a gated zero reset and the '90A and 'LS90 also have gated set-to-nine inputs for use in BCD nine's complement applications.

To use their maximum count length (decade, divide-by-twelve, or four-bit binary) of these counters, the CKB input is connected to the Q_A output. The input count pulses are applied to CKA input and the outputs are as described in the appropriate function table. A symmetrical divide-by-ten count can be obtained from the '90A or 'LS90 counters by connecting the Q_D output to the CKA input and applying the input count to the CKB input which gives a divide-by-ten square wave at output Q_A .

VCC 15 101 GND R9(1) 6 9 0B R9(2) 7 8 0C SN5492A, SN54LS92 ... J OR W PACKAGE SN7492A ... N PACKAGE SN74LS92 ... D OR N PACKAGE

(TOP VIEW)					
скв 🗗	U 14] СКА				
	13 NC				
	12 D QA				
NC []4	11] QB				
Vcc ⊈₅	10 GND				

R0(2) 7 8 0D SN5493A, SN54LS93 . . . J OR W PACKAGE SN7493 . . . N PACKAGE

эД **0**с

R0(1) 6

SN74LS93 . . . D OR N PACKAGE

		10	- 4 1		• •	
скв	þ	1	U	14	þ	ска
RO(1)	C	2		13	Þ	NC
R0(2)	С	3		12	þ	QA
NC	D	4		11	Þ	QD
Vcc	D	5		10	Þ	GND
NC	D	6		9	Þ	QВ
NC		7		8	Þ	QC
		_		_	•	

NC-No internal connection

PRODUCTION DATA documents contain information current as of publication data. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.

SN5490A, '92A, '93A, SN54LS90, 'LS92, 'LS93, SN7490A, '92A, '93A, SN74LS90, 'LS92, 'LS93 Decade, Divide-by-twelve, and Binary Counters

[†]These symbols are in accordance with ANSI/IEEE Std. 91-1984 and IEC Publication 617-12.

SN5490A, '92A, '93A, SN54LS90, 'LS92, 'LS93, SN7490A, '92A, '93A, SN74LS90, 'LS92, 'LS93 Decade, Divide-by-twelve, and Binary Counters

	'90A, 'LS90 BI-QUINARY (5-2) (See Note B)						
	COUNT		OUT	PUT			
	CUUNT	٩A	QD	o _c	QB		
	0	L	L	L	Ľ		
	1	L	L	L	н		
1	2	L	L	н	L		
	3	L	L	н	н		
	4	L	н	L	L		
	5	н	L	L	L		
	6	н	L	L	н		
	7	н	L	н	L		
	8	н	L	н	н		
	9	н	н	L	L		

1904	A, 'LS90	
RESET/COUNT	FUNCTION	TABLE

RESET INPUTS					OUT	PUT		
R ₀₍₁₎	R0(2)	QD	ac	a ₈	QA			
н	н	L	x	L	L.	L	L	
н	н	x	Ł	L	L	L	L	
×	x	н	н	н	L	L	н	
X	Ł	х	L	COUNT				
L	х	L	х	COUNT				
L L	×	x	L	COUNT				
x	L	L	х	COUNT				

'93A, 'LS93 COUNT SEQUENCE

	(See Note C)					
COUNT	OUTPUT					
COUNT	QD	$\mathbf{Q}_{\mathbf{C}}$	۵B	QA		
0	L	Ľ	L	L		
1	L	L	L	н		
2	L	L	н	L		
3	L.	L	н	н		
4	L	н	L	L		
5	L	н	L	н		
6	L	н	н	L		
7	L	н	н	н		
8	н	L.	L	L		
9	н	L	L	н		
10	н	L	н	L		
11	н	L	н	н		
12	н	н	L	L		
13	н	н	L	н		
14	н	н	н	L		
15	н	н	н	н		

	'90A, 'LS90 BCD COUNT SEQUENCE (See Note A)						
			ουτ	PUT			
ļ	COUNT	ao	٥ç	о _в	QA		
	0	L	L	L	L		
	1	L	L	Ł	-н		
	2	Ł	L	н	L		
	3	L.	L	н	н		
	4	L	н	L	L		
	5	L	н	L	н		
	6	L	н	н	L		
	7	L	н	н	H		
	8	н	L	L	L		

'92A, 'LS92 COUNT SEQUENCE (See Note C)

нL

9

2

H

L

(See Note C)						
COUNT	OUTPUT					
COUNT	QD	QC	a ₆	٩A		
0	L	L	L	L		
1	L	L	L	н		
2	L	L	н	L		
3	L	L	н	н		
4	L	н	L	L		
5	L	н	L	н		
6	н	L	L	L		
7	н	L	L	н		
8	н	L	н	L		
9	н	L	н	н		
10	н	н	L	L		
11	н	н	L	н		

'92A, 'LS92,	'93A, 'LS93
RESET/COUNT FU	INCTION TABLE

	RESET		001	PUT		
	R ₀₍₁₎	R ₀₍₂₎	۵ _D	ac	α _B	QA
	н	н	L	L	L	L
1	L	×	COUNT			
	x	L		cou	JNT	

NOTES: A. Output Q_A is connected to input CKB for BCD count. B. Output Q_D is connected to input CKA for bi-quinary count.

- C. Output Ω_A is connected to input CKB.
- D. H = high level, L = low level, X = irrelevant

SN5490A, '92A, '93A, SN54LS90, 'LS92, 'LS93, SN7490A, '92A, '93A, SN74LS90, 'LS92, 'LS93 Decade, Divide-By-Twelve, and Binary Counters

The J and K inputs shown without connection are for reference only and are functionally at a high level. Pin numbers shown in () are for the 'LS93 and '93A and pin numbers shown in [] are for the 54L93.

schematics of inputs and outputs

'90A, '92A, '93A EQUIVALENT OF EACH INPUT TYPICAL OF ALL OUTPUTS Vcc $v_{\rm CC}$ Req 100 Ω NOM INPUT OUTPUT h R_{eq} NOM 2.5 kΩ INPUT СКА 1.25 k Ω CKB ('90A, '92A) 2.5 kΩ CKB (193A) 6kΩ All resets

> TEXAS TEXAS INSTRUMENTS POST OFFICE BOX 655012 • DALLAS, "EXAS 75265

SN54LS90, 'LS92, 'LS93, SN74LS90, 'LS92, 'LS93 Decade, Divide-By-twelve, and Binary Counters

schematics of inputs and outputs (continued)

3

٠

SN5490A, SN5492A, SN5493A, SN7490A, SN7492A, SN7493A Decade, Divide-By-Twelve, and Binary Counters

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, V _{CC} (see Note 1)
Input voltage
Interemitter voltage (see Note 2)
Operating free-air temperature range: SN5490A, SN5492A, SN5493A
SN7490A, SN7492A, SN7493A
Storage temperature range

NOTES: 1. Voltage values, except interemitter voltage, are with respect to network ground terminal.

This is the voltage between two emitters of a multiple-emitter transistor. For these circuits, this rating applies between the two R₀ inputs, and for the '90A circuit, it also applies between the two R₀ inputs.

recommended operating conditions

		SN549	00A, SN	5492A	SN749	UNIT		
		:	SN5493.	A	:			
		MIN	NOM	MAX	MIN	NOM	MAX	
Supply voltage, VCC		4.5	5	5.5	4.75	5	5.25	V
High-level output current, IOH			-800			-800	μA	
Low-level output current, IOL			16			16	mA	
	A input	0		32	0		32	MHz
Count frequency, fcount (see Figure 1)	Binput	0		16	0		16	
	Ainput	15			15			
Pulse width, t _w	B input	30			30			1 กร
	Reset inputs				15			
Reset inactive-state setup time, t _{SU}		25			25			ns
Operating free-air temperature, TA		55		125	0		70	°C

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

				t		'90A			'92A			<u>'93A</u>		UNIT
	PARAMET	ER	TEST CON	DITIONS	MIN	түр	MAX	MIN	ТҮР‡	MAX	MIN	ТҮР∜	MAX	UNIT
ViH	High-level inp	ut voltage			2			2			2			V
VIL	Low-level inpu	ut voltage			1		0.8			0.8			0.8	V
VIK	Input clamp v		V _{CC} = MIN, I	j =12 mA			-1.5			-1.5			-1.5	V
	မှ High-level output voltage		V _{CC} = MIN, V V _{IL} = 0.8 V, Ic		2.4	3.4		2.4	3.4		2.4	3.4		v
VOL	Low-level output voltage		V _{CC} = MIN, V V _{IL} = 0.8 V, I			0.2	0.4		0.2	0.4		0.2	0.4	v
1	Input current maximum inp	$V_{CC} = MAX, V_{I} = 5.5 V$				1			1			1	mΑ	
		Any reset					40			40			40	
чн	High-level	CKA	V _{CC} = MAX, V _I = 2.4	1 = 2.4 V			80			80			80	μA
	input current	СКВ					120			120			80	
		Any reset					-1.6	-		-1.6			-1.6	
կլ	Low-level	СКА	V _{CC} = MAX, V	′t = 0.4 V			-3.2			-3.2			-3.2	mA
	input current	СКВ					-4.8			-4.8			-3.2	
	Short-circuit			SN54'	-20		-57	-20		-57	-20		-57	mА
los	output curren	tš	VCC = MAX	SN 74'	-18		-57	-18		-57	-18		-57	
lcc	Supply curren	t	VCC = MAX, S	ee Note 3		29	42		26	39		26	39	mA

[†]For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

 $\frac{2}{3}$ All typical values are at V_{CC} = 5 V, T_A = 25 C.

Not more than one output should be shorted at a time.

 $^{\circ}$ Ω_{A} outputs are tested at $I_{OL} = 16$ mA plus the limit value for I_{IL} for the CKB input. This permits driving the CKB input while maintaining full fan-out capability.

NOTE 3: I_{CC} is measured with all outputs open, both R_0 inputs grounded following momentary connection to 4.5 V, and all other inputs grounded.

SN5490A, SN5492A, SN5493A, SN7490A, SN7492A, SN7493A DECADE, DIVIDE-BY-TWELVE, AND BINARY COUNTERS

PARAMETER	FROM	то	TECT CONDITIONS	'90A		'92A			'93A				
PAHAMETER	(INPUT)	(OUTPUT)	TEST CONDITIONS	MIN	ТҮР	МАХ	MIN	TYP	MAX	MIN	TYP	MAX	
	СКА	QA		32	42		32	42		32	42		
[†] max	СКВ	OB	1	16			16			16			MHz
^t PLH	СКА	0.]		10	16		10	16		10	16	
^T PHL		QA	С _L = 15 рF,		12	18		12	18		12	18	ns
^t PLH	ска	а _р			32	48		32	48		46	70	
^t PHL		D			34	50		34	50		46	70	- 115
†PLH	СКВ	Q _B			10	16		10	16		10	16	
^t PHL	CRB	αB	RL=400Ω,		14	21		14	21		14	21	ns
^t PLH	скв	0.0	See Figure 1		21	32		10	16		21	32	
tPHL		αc			23	35		14	21		23	35	ns
^T PLH	СКВ	0 _D			21	32		21	32		34	51	
^t PHL	C.K.I	- CD	-		23	35		23	35		34	51	ns
tPHL	Set-to-0	Any			26	40		26	40		26	40	ns
^t PLH	Set-to-9	0 _A , 0 _D			20	30							
^t PHL	361-10-9	QB, QC			26	40							N 5

switching characteristics, V_{CC} = 5 V, TA = 25°C

[†]f_{max} = maximum count frequency

÷.

-

tpLH = propagation delay time, low-to-high-level output

tpHL = propagation delay time, high-to-low-level output

SN54LS90, SN54LS92, SN54LS93, SN74LS90, SN74LS92, SN74LS93 DECADE, DIVIDE-BY-TWELVE, AND BINARY COUNTERS

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, V _{CC} (see Note 1)	
Input voltage: Rinputs ,	V
A and B inputs	V
Operating free-air temperature range: SN54LS' Circuits	°C
SN74LS' Circuits $,$ $,$ $,$ $,$ $,$ $,$ $,$ $,$ $,$ $,$	°C
Storage temperature range $$ -65° C to 150°	°C

NOTE 1: Voltage values are with respect to network ground terminal.

recommended operating conditions

		5	N54LS N54LS N54LS	92	9 9 9	UNIT			
		MIN	NOM	MAX	MIN	NOM	MAX		
Supply voltage, VCC		4.5	5	5.5	4.75	5	5.25	v	
High-level output current, IOH				-400	-		-400	μA	
Low-level output current, IOL				4			8	mA	
Count tracupanty (Ainput	0		32	0		32		
Count frequency, fcount (see Figure 1)	Binput	0		16	0		16	MHz	
	A input				15			1	
Pulse width, tw	Binput	30			30			пs	
	Reset inputs	30			30	-		1	
Reset inactive-state setup time, tsu		25			25			ns	
Operating free-air temperature, TA		55		125	0		70	Ċ	

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER			TEST CONDITIONS [†]				N54LS		s	UNIT		
						MIN	түр‡	MAX	MIN	TYP‡	MAX	
⊻ін	High-level inpu	t voltage				2			2			v
VIL	Low-level inpu	t voltage						0.7			0.8	v
۷ік	Input clamp vo	oltage	V _{CC} = MIN,	lj = -18 mA				-1.5			-1.5	v
VOH High-level output voltage		V _{CC} = MIN, VIL = VILmax,		A	2.5	3.4		2.7	3.4		v	
			VCC = MIN,	V _{IH} = 2 V,	10L = 4 mA 1	I	0.25	0.4		0.25	0,4	
VOL	Low-level output voltage		VIL = VIL max.		IOL = 8 mA					0.35	0.5	v
	Input current	Any reset	V _{CC} = MAX,	V1 = 7 V				0.1			0.1	
4	at maximum	СКА	M	N				0.2			0.2	mA
	input voltage	СКВ	V _{CC} = MAX,	V _I = 5.5 V		<u> </u>		0.4			0.4	
	High-level	Any reset		Vi = 2.7 V				20			20	·····
ЧH	-	CKA	V _{CC} = MAX,					40	_		40	μA
	input current	СКВ						80			80	
	Low-level	Any reset						-0.4			-0.4	
ΙL		CKA	V _{CC} = MAX,	Vt ≈ 0.4 V				-2.4			-2.4	mA
_	input current	СКВ						-3.2			-3.2	
los	Short-circuit ou	utput current§	V _{CC} = MAX			-20		100	20		-100	mA
laa	Supply current				'LS90		9	15		9	15	
iuu	ICC Supply current		V _{CC} = MAX, See Note 3		'LS92		9	15		9	15	mΑ

[†]For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions, \ddagger Ail typical values are at V_{CC} = 5 V, T_A = 25°C.

 § Not more then one output should be shorted at a time, and duration of the short-circuit should not exceed one second. \P_{Q_A} outputs are tested at specified IOL plus the limit value of I_{IL} for the CKB input. This permits driving the CKB input while maintaining full fan-out capability.

NOTE 3: ICC is measured with all outputs open, both RO inputs grounded following momentary connection to 4.5 V, and all other inputs grounded.

SN54LS90, SN54LS92, SN54LS93, SN74LS90, SN74LS92, SN74LS93 DECADE, DIVIDE-BY-TWELVE, AND BINARY COUNTERS

					at	s	N54LS9	3	s	3		
	PARAME	TER	1	ST CONDITION	5'	MIN	түр‡	MAX	MIN	түр‡	MAX	UNIT
⊻н	High-level inpu	it voltage				2			2			V
VIL	Low-level inpu	t voltage						0.7			0.8	V
VIK	Input clamp ve	oltage	V _{CC} = MIN,	lj = ~18 mA				-1.5			-1.5	V
V _{OH} High-level output voltage V _{CC} = MIN, V _{IH} = 2 V, V _{1L} = V _{IL} max, I _{OH} = -400 μA				2.5	3.4		2.7	3.4		v		
VOL Low-level			V _{CC} = MIN,	V _{IH} = 2 V,	IOL = 4 mA®		0.25	0.4		0.25	0.4	v
	Low-level output voltage		VIL = VIL max		IOL = 8 mA				1	0.35	0.5	v
	Input current	Any reset	V _{CC} = MAX,	V ₁ = 7 V				0.1			0.1	-
I,	at maximum input voltage	CKA or CKB	Vcc = MAX,	V _{CC} = MAX, V _I = 5.5 V				0.2			0.2	mΑ
	High-level	Any reset		V - 2 7 V				20			20	
ΗI	input current	CKA or CKB	Vcc = MAX,	V ₁ = 2.7 V			40			80	μA	
		Any reset						-0.4			-0.4	
կլ	Low-level	СКА	V _{CC} = MAX,	V ₁ = 0.4 V				-2.4			-2.4	mA
_	input current	СКВ					-1.6			-1.6		
los	IOS Short-circuit output current VCC = MA		V _{CC} = MAX			-20		-100	-20		-100	mA
ICC Supply current		V _{CC} = MAX,	See Note 3			9	15		9	15	mΑ	

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

[†]For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions

5

[‡]All typical values are at $V_{CC} = 5 V$, $T_A = 25^{\circ}C$. §Not more than one output should be shorted at a time, and duration of the short-circuit should not exceed one second.

 Q_A outputs are tested at specified I_{OL} plus the limit value for I_{1L} for the CKB input. This permits driving the CKB input while maintaining full fan out capability.

NOTE 3: ICC is measured with all outputs open, both RO inputs grounded following momentary connection to 4.5 V, and all other inputs grounded.

switching characteristics, VCC = 5 V, TA = 25° C

	FROM	то	TEST CONDITIONS		'LS90	•		'LS92		'L\$93			UNIT
PARAMETER#	(INPUT)	(OUTPUT)		MIN	түр	MAX	MIN	TYP	MAX	MIN	TYP	MAX	
. –	СКА	QA		32	42		32	42		32	42		MHz
f _{max}	СКВ	QB		16			16			16			
^t PLH	СКА	0.			10	16		10	16		10	16	- 175
IPHL		QA]		12	18		12	18		12	18	143
^t PLH	СКА	0-	ĊL = 15 pF, RL = 2 kΩ		32	48		32	48		46	70	ns
^t PHL		QD			34	50		34	50		46	70	
^T PLH	скв	0-			10	16		10	16		10	16	i → ns
tPHL_		OB			14	21		14	21		14	21	
1PLH	СКВ	0.0	See Figure 1		21	32		10	16		21	32	ns
трні.		ο _C			23	35		14	21		23	35	
τΡLΗ	CKD	0-			21	32		21	32		34	51	ns
1PHL	СКВ	QD			23	35		23	35		34	51	115
1PHL	Set-to-0	Any			26	40		26	40		26	40	ns
^t PLH	Set-to-9	Ω_A, Ω_D			20	30							ns
1PHL	361-10-3	a _B , a _C			26	40							

#fmax = maximum count frequency

tpLH = propagation delay time, low-to-high-level output

tpHL = propagation delay time, high-to-low-level output

SN5490A, SN5492A, SN5493A, SN54LS90, SN54LS92, SN54LS93, SN7490A, SN7492A, SN7493A, SN74LS90, SN74LS92, SN74LS93 Decade, Divide-By-twelve, and binary counters

PARAMETER MEASUREMENT INFORMATION

LOAD CIRCUIT

- NOTES: A. Input pulses are supplied by a generator having the following characteristics:
 - for '90A, '92A, '93A, $t_r \le 5 \text{ ns}$, $t_f \le 5 \text{ ns}$, PRR = 1 MHz, duty cycle = 50%. $Z_{out} \approx 50 \text{ ohms}$; for 'LS90, 'LS93, $t_r \le 15 \text{ ns}$, $t_f \le 5 \text{ ns}$, PRR = 1 MHz, duty cycle = 50%, $Z_{out} \approx 50 \text{ ohms}$. B. CL includes probe and jig capacitance.
 - C. All diodes are 1N3064 or equivalent.

Ç

- D. Each reset input is tested separately with the other reset at 4.5 V.
- E. Reference waveforms are shown with dashed lines.
- F. For '90A, '92A, and '93A; V_{ref} = 1.5 V. For 'LS90, 'LS92, and 'LS93; V_{ref} = 1.3 V.

FIGURE 1B

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any semiconductor product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

TI warrants performance of its semiconductor products and related software to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

Certain applications using semiconductor products may involve potential risks of death, personal injury, or severe property or environmental damage ("Critical Applications").

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS.

Inclusion of TI products in such applications is understood to be fully at the risk of the customer. Use of TI products in such applications requires the written approval of an appropriate TI officer. Questions concerning potential risk applications should be directed to TI through a local SC sales office.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards should be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or services described herein. Nor does TI warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used.

Copyright © 1996, Texas Instruments Incorporated