SDLS107

- Dual Versions of the Popular '90A, 'LS90 and '93A, 'LS93
- '390, 'LS390 . . . Individual Clocks for A and B Flip-Flops Provide Dual ÷ 2 and ÷ 5 Counters
- '393, 'LS393 . . . Dual 4-Bit Binary Counter with Individual Clocks
- All Have Direct Clear for Each 4-Bit Counter
- Dual 4-Bit Versions Can Significantly Improve System Densities by Reducing Counter Package Count by 50%
- Typical Maximum Count Frequency.... 35 MHz
- Buffered Outputs Reduce Possibility of Collector Commutation

description

Each of these monolithic circuits contains eight master-slave flip-flops and additional gating to implement two individual four-bit counters in a single package. The '390 and 'LS390 incorporate dual divide-by-two and divide-by-five counters, which can be used to implement cycle lengths equal to any whole and/or cumulative multiples of 2 and/or 5 up to divide-by-100. When connected as a bi-quinary counter, the separate divide-by-two circuit can be used to provide symmetry (a square wave) at the final output stage. The '393 and 'LS393 each comprise two independent four-bit binary counters each having a clear and a clock input. N-bit binary counters can be implemented with each package providing the capability of divide-by-256. The '390, 'LS390, '393, and 'LS393 have parallel outputs from each counter stage so that any submultiple of the input count frequency is available for system-timing signals.

Series 54 and Series 54LS circuits are characterized for operation over the full military temperature range of -55° C to 125° C; Series 74 and Series 74LS circuits are characterized for operation from 0° C to 70° C.

SN54390, SN54LS390, SN54393, SN54LS393, SN74390, SN74LS390, SN74393, SN74LS393 DUAL 4-BIT DECADE AND BINARY COUNTERS OCTOBER 1976 - REVISED MARCH 1988

NC - No internal connection

PRODUCTION DATA documents contain information current as of publication dats. Products conform to specifications per the terms of Taxes Instruments standard warranty. Production processing does not necessarily include testing of all parameters.

-1 1

SN54390, SN54LS390, SN54393, SN54LS393, SN74390, SN74LS390, SN74393, SN74LS393 DUAL 4-BIT DECADE AND BINARY COUNTERS

NOTES: A. Output Ω_A is connected to input B for BCD count. B. Output Ω_D is connected to input A for bi-quinary

count. C. H = high level, L = low level.

,

[†]These symbols are in accordance with ANSI/IEEE Std. 91-1984 and IEC Publication 617-12.

Pin numbers shown are for D, J, N, and W packages.

÷

. . .

TEXAS INSTRUMENTS POST OFFICE BOX 655012 + DALLAS, TEXAS 75265 "393, 'LS393

COUNT SEQUENCE (EACH COUNTER)

(E/	ACH	COU	NIE	47 17
COUNT		OUT	PUT	
COONT	QD	QC.	QB	QA
0	L	L	L	L
· 1	L	Ł	L	н
2		L	н	L
3	L	Ļ	н	н
4	L L L	н	L	L
5	L	н	L	н
6	L	н	н	L
7	L L L	н	н	н
8	н	Ł	L	L
9	н	L	L	н
10	н	L	н	L
11	н	L	н	н
12	н	н	Ł	L
13	н	н	L	н
14	н	н	н	L
15	н	н	н	н

SN54390, SN54LS390, SN54393, SN54LS393, SN74390, SN74LS390, SN74393, SN74LS393 DUAL 4-BIT DECADE AND BINARY COUNTERS

SN54LS390, SN54LS393, SN74LS390, SN74LS393 DUAL 4-BIT DECADE AND BINARY COUNTERS

D. 0	FROM	то		ł	'LS390			'LS393		Ì			
PARAMETER	(INPUT)	(OUTPUT)	TEST CONDITIONS	MIN	түр	MAX	MIN	ТҮР	MAX	UNI			
4	A	QA		25	35		25	35		MHz			
fmax	В	QB		12.5	20					MHZ			
tPLH	A .	0			12	20		12	20				
ΨHL		QA			13	20		13	20	ns			
tPLH	A	Q _C of 'LS390	C _L = 15 pF,		37	60		40	60	ns			
1PHL		QD of 'LS393	$R_{L} = 2 k\Omega_{s}$		39	60		40	60				
tPLH	8	0.	0.	0-	0.	See Note 4 and Figure 2		13	21				ns
tPHL		۵ _B		[14	21		_		115			
^t PLH	Ð	0.			24	39				ns			
1PHL			۵ _C			26	39						
^t PLH	в	0-			13	21							
tPHL	D	۵D			14	21				115			
tPHL	Ciear	Any			24	39		24	39	ns			

.

switching characteristics, VCC = 5 V, $T_A = 25^{\circ}C$

NOTE 4: Load circuits and voltage waveforms are shown in Section 1.

.

SN54LS390, SN54LS393, SN74LS390, SN74LS393 DUAL 4-BIT DECADE AND BINARY COUNTERS

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

9	Supply voltage, VCC (see Note 1)					-		,	-	7V
(Clear input voltage									7 V
1	Any A or B clock input voltage								-	5.5 V
	Operating free-air temperature range: SN54LS390, S									
	SN74LS390, S	SN74LS393							-	0°C to 70°C
5	Storage temperature range		• •							. –65°C to 150°C

NOTE 1: Voltage values are with respect to network ground terminal.

recommended operating conditions

		1	N54LS:	-	SI SI	UNIT			
		MIN	NOM	MAX	MIN	NOM	MAX		
Supply voltage, V _{CC}	4.5	5	5.5	4.75	5	5.25	V		
High-level output current, IOH				400			-400	μA	
Low-level output current, IOL				4		_	8	mA	
Count frequency, fcount	A input	0		25	0		25	25	
Count meddency, 'count	B input	0		12.5	0		12.5	MHz	
	A input high or low	20			20				
Pulse width, t _w	B input high or low	40			40			ns	
	Clear high	20			20			1	
Clear inactive-state setup time, t _{su}	· · · ·	251			254	-		ns	
Operating free-air temperature, TA		-55		125	0		70	°C	

 1 The arrow indicates that the falling edge of the clock pulse is used for reference.

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

DADAMETED				TOOLOUTION	ŧ		SN54L	S'				
	PARAMETER		165	ST CONDITIONS	I	MIN	түр‡	MAX	MIN	TYP‡	МАХ	
VIH	High-level input voltage					2			2			V
VIL	Low-level input voltage							0.7			0.8	V
٧ıĸ	Input clamp voltage		V _{CC} = MIN,	l1 =18 mA				-1.5			-1.5	V
∨он	High-level output voltage	2	V _{CC} = MIN, V _{IL} = V _{IE} max,	V _{IH} - 2 V, I _{OH} = −400 µA	A	2.5	3.4		2.7	3.4		v
Ma.			V _{CC} = MIN,	VIH = 2 V,	IOL = 4 mA¶	1 -	0.25	0.4	-	0.25	0.4	
VOL	Low level output voltage		VIL = 0.8 V.		IOL - 8 mA¶	1	-			0.35	0.5	1 Č
	Input current at	Clear	<u> </u>		V ₁ = 7 V	1		0.1			0.1	
11	maximum input voltage	Input A	V _{CC} = MAX	ΔX	V ₁ - 5.5 V			0.2			0.2	mA
	maximum input vortage	Input 8			V 5.5 V			0.4			0.4	
	(Clear						0.02			0.02	
Чн	High-level input current	Input A	V _{CC} = MAX,	V ₁ = 2.7 V				0.1			0.1	mł
		Input B						0.2			0.2	L
		Clear						-0.4			-0.4]
¹ IL	Low-level input current	Input A	VCC - MAX,	V1 - 0.4 V				1.6			1.6	m A
-		Input B						-2.4			-2.4]
los	Short-circuit output cure	ent§	V _{CC} - MAX			-20		-100	-20		-100	m/
100	Supply current		VCC - MAX,		'LS390	1	15	26		15	26	m
Icc	ORABLA COLLENC		See Note 2		LS393		15	26		15	26	

[†] For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

¹ All typical values are at V_{CC} = 5 V, T_A = 25°C.

[§] Not more than one output should be shorted at a time, and duration of the short-circuit should not exceed one second.

The Q_A outputs of the 'LS390 are tested at $I_{OL} = MAX$ plus the limit value for I_{IL} for the clock B input. This permits driving the clock B input while maintaining full fan-out capability.

NOTE 2: ICC is measured with all outputs open, both clear inputs grounded following momentary connection to 4.5 V, and all other inputs grounded.

NOTE A: Input pulses are supplied by a generator having the following characteristics $t_r \le 5$ ns, $t_f \le 5$ ns, PRR = 1 MHz, duty cycle = 50%, Z_{out} = 60 ohms.

FIGURE 1

;

SN54390, SN54393, SN74390, SN74393 DUAL 4 BIT DECADE AND BINARY COUNTERS

PARAMETER	FROM	то	TEAT CONDUCTOR	ſ	'390					
	(INPUT)	(OUTPUT)	TEST CONDITIONS	MIN	ТҮР	MAX	MIN	TYP	MAX	
fmax	A	QA		25	35		25	35		
'max	8	OB		20	30					MHz
IPLH	- A	0.			12	20		12	20	ns
^t PHL		QA			13	20		13	20	
tPLH	- A	Q _C of '390			37	60		40	60	
TPHL		Q _D of '393			39	60		40	60	ns
^t ₽ĻH	в	0	See Note 3		13	21				† . <u> </u>
<u>tehl</u>	8	QB	and		14	21				ns
tp <u>L</u> H	в	0	Figure 1		24	39				
TPHL	8	B QC			26	39			-	ns
^t PLH	8	0.	ſ		13	21				
^t PHL	0	QD	ļ		14	21		-		ns
1PHL	Clear	Any]		24	39		24	39	ns

.

switching characteristics, $V_{CC} = 5 V$, $T_A = 25^{\circ}C$

,

NOTE 3: Load circuits and voltage waveforms are shown in Section 1.

•

.

SN54390, SN54393, SN74390, SN74393 DUAL 4-BIT DECADE AND BINARY COUNTERS

· .

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, VCC (see Note 1)		 	7V
Input voltage		 	5.5 V
Operating free-air temperature range: SN543	90, SN54393	 	–55°C to 125°C
SN743	90, SN74393	 	0°C to 70°C
Storage temperature range		 	—65°C to 150°C

NOTE 1: Voltage values are with respect to network ground terminal.

recommended operating conditions

		1	SN54390 SN54393			SN74390 SN74393			
		MIN	NÒM	MAX	MIN	NOM	MAX	1	
Supply voltage, V _{CC}				5.5	4.75	5	5.25	V	
High-level output current, IOH	·····			800			-800	μA	
Low-level output current, IOL				16			16	mA	
Court fragments f	A input	0		25	0		25		
Count frequency, fcount	8 input	Ō		20	0		20	MHz	
	A input high or low	20			20				
Pulse width, t _w	Binputhigh or low	25			25			ns	
	Clear high	20			20				
Clear inactive-state setup time, t _{su}	*	254			25 J			ns	
Operating free-air temperature, TA		-55		125	0		70	°C	

 $^{\downarrow}$ The arrow indicates that the falling edge of the clock pulse is used for reference.

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

	PARAMETER		TEAT AGA			'39 0			′ 393		
	FARAMETER		TEST CON	IDITIONS [†]	MIN	TYP‡	MAX	MIN	TYP‡	MAX	UNIT
V _{fH}	High-level input voltage				2			2			V
VIL	Low-level input voltage				1		0.8	<u> </u>		0.8	v
VIK_	Input clamp voltage		V _{CC} = MIN,	lı =12 mA			-1.5	[-1.5	V
V _{OH}	High-level output voltage		V _{CC} = MIN, V _{IL} = 0.8 V,	V _{IH} = 2 V, ^I OH = -800 μA	2.4	3.4		2.4	3.4		v
VOL	Low-level output voltage		V _{CC} = MIN, V _{IL} = 0.8 V,	V _{IH} = 2 V,		0.2	0.4		0.2	0.4	v
t;	Input current at maximum input voltage		VCC = MAX.	V _I = 5.5 V	ĺ		1			1	mA
		Clear	1	. V _I = 2.4 V			40		·	40	
ЧH	High-level input current	Input A	V _{CC} = MAX.		• •		80		_	80	μA
		Input 8					120				
		Clear					-1			- 1	
IL.	Low-level input current	Input A	V _{CC} = MAX,	V ₁ = 0.4 V			-3.2			-3.2	лA
		Input B					-4.8	<u> </u>			1
laa	Short-circuit output current §			SN54'	-20		-57	-20		57	
los	Shorten can output currents		V _{CC} = MAX	SN74'	-18		-57	-18		-57	mA
1CC	Supply current		V _{CC} = MAX, S	See Note 2		42	69		38	64	mA

[†] For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

T All typical values are at V_{CC} = 5 V, T_A = 25 °C.

Not more than one output should be shorted at a time.

The QA outputs of the '390 are tested at IQL = 16 mA plus the limit value for I_{1L} for the B input. This permits driving the B input while maintaining full fan-out capability.

NOTE 2: fcc is measured with all outputs open, both clear inputs grounded following momentary connection to 4.5 V, and all other inputs grounded.

1 1

NOTE A: Input pulses are supplied by a generator having the following characteristics $t_f \le 6$ ns, PAR = 1 MHz, duty cycle = 50 %, $Z_{out} \approx 50$ ohms,

FIGURE 2

SN54LS390, SN54LS393, SN74LS390, SN74LS393 Dual 4-bit decade and binary counters

Texas 🦑 Instruments

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any semiconductor product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

TI warrants performance of its semiconductor products and related software to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

Certain applications using semiconductor products may involve potential risks of death, personal injury, or severe property or environmental damage ("Critical Applications").

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS.

Inclusion of TI products in such applications is understood to be fully at the risk of the customer. Use of TI products in such applications requires the written approval of an appropriate TI officer. Questions concerning potential risk applications should be directed to TI through a local SC sales office.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards should be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or services described herein. Nor does TI warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used.

Copyright © 1996, Texas Instruments Incorporated