SN54365A THRU SN54368A, SN54LS365A THRU SN54LS368A SN74365A THRU SN74368A, SN74LS365A THRU SN74LS368A HEX BUS DRIVERS WITH 3-STATE OUTPUTS

SDLS102

- 3-State Outputs Drive Bus Lines or Buffer Memory Address Registers
- Choice of True or Inverting Outputs
- Package Options Include Plastic "Small Outline" Packages, Ceramic Chip Carriers and Flat Packages, and Plastic and Ceramic DIPs
- Dependable Texas Instruments Quality and Reliability

'365A, '367A, 'LS365A, 'LS367A True Outputs '366A, '368A, 'LS366A, 'LS368A Inverting Outputs

description

These Hex buffers and line drivers are designed specifically to improve both the performance and density of three-state memory address drivers, clock drivers, and bus oriented receivers and transmitters. The designer has choice of selected combinations of inverting and noninverting outputs, symmetrical \overline{G} (active-low control) inputs.

These devices feature high fan-out, improved fan-in, and can be used to drive terminated lines down to 133 ohms.

The SN54365A thru SN54368A and SN54LS365A thru SN54LS365A are characterized for operation over the full military temperature range of -55 °C to 125 °C. The SN74365A thru SN74368A and SN74LS365A thru SN74LS368A are characterized for operation from 0 °C to 70 °C.

SN54365A, 366A, SN54LS365A, 366A...J PACKAGE SN74365A, 366A...N PACKAGE SN74LS365A. SN74LS366A...D OR N PACKAGE

TOP VIEW

DECEMBER 1983-REVISED MARCH 1988

	10	E VIEVY)
G1 [[1	
A1 [2	15 🗋 🔂
Y1 🗋	3	14 🗋 A6
A2 [4	13 🗋 Y6
Y2 🗋	5	12 🗍 A5
A3 [6	11 🗍 Y5
Y3 🗌	7	10 🗌 A4
GND 🗌	8	9 🗋 Y4

SN54LS365A, SN54LS366A . . . FK PACKAGE (TOP VIEW)

SN54367A. 368A, SN54LS367A, 368A . . . J PACKAGE SN74367A, 368A . . . N PACKAGE SN74LS367A, SN74LS368A . . . D OR N PACKAGE

	(TOP VIEW)											
1Ğ	Цī	U_{16}	Dv <u>c</u> c									
1A1	2 2	15	2 G									
1Y1	□ 3	14	2A2									
1A2	[]₄	13	2Y2									
1Y2	5	12	2A1									
1A3	<u>[</u> 6	11] 2Y1									
1 Y 3	D 7	10	1A4									
GND	<u>[8</u>	9] 1Y4									

SN54LS367A, SN54LS368A . . . FK PACKAGE (TOP VIEW)

1Y1 🛛 4 18 🛛 2A2 1A2 🛛 5 17 2Y2 NC 🗄 6 NC 16[] 1Y2 🛮 7 15 🛛 2A1 1A3 🛛 8 14 [] 2Y1 10 11 12 13 NC - No internal connection

PRODUCTION DATA documents contain information current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.

SN54365A THRU SN54368A, SN54LS365A THRU SN54LS368A SN74365A THRU SN74368A, SN74LS365A THRU SN74LS368A HEX BUS DRIVERS WITH 3-STATE OUTPUTS

INSTRUMENTS POST OFFICE BOX 665012 • DALLAS, TEXAS 75265

SN54365A THRU SN54368A, SN54LS365A THRU SN54LS368A SN74365A THRU SN74368A, SN74LS365A THRU SN74LS368A HEX BUS DRIVERS WITH 3-STATE OUTPUTS

logic symbols[†]

[†]These symbols are in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12. Pin numbers shown are for D, J, and N packages.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, VCC (see Note	1)	
Input voltage: '365A, '366A, '3	67A, '368A	5.5 V
′LS365A, ′LS366	A, 'LS367A, 'LS368A	
	tate output	
	SN54'	
	SN74'	0°C to 70°C

NOTE 1: Voltage values are with respect to network ground terminal,

TEXAS INSTRUMENTS POST OFFICE BOX 655012 + DALLAS. TEXAS 75265

SN54365A, SN54367A SN74365A, SN74367A HEX BUS DRIVERS WITH 3-STATE OUTPUTS

recommended operating conditions

			SN54365A SN54367A			SN74365A SN74367A			
		MIN	NOM	мах	MIN	NOM	мах	UNIT	
Vcc	Supply voltage	4.5	- 5	5.5	4.75	5	5.25	V	
VIH	High-level input voltage	2			2			v	
VIL	Low-level input voltage		_	0.8			0.8	v	
юн	High-level output current			- 2			- 5.2	mA	
IOL	Low-level output current		_	32			32	mA	
TA	Operating free-air temperature	- 55		125	٥		70	°c	

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PAR		TEST CONDITIONS †				SN54368 SN54367			N74365		UNIT
					MIN	TYP‡	MAX	MIN	TYP‡	мах	
VII	<	V _{CC} ≈ MIN,	l _† = – 12 mA				- 1.5			1.5	v
٧o		V _{CC} - MIN, I _{OH} = MAX	V _{IH} ∸ 2 V,	V _{1L} = 0.8 V,	2.4	3.3		2.4	3.1		v
٧o		V _{CC} = MIN, I _{OL} = 32 mA	V _{1H} = 2 V,	V _{IL} = 0.8 V,			0.4			0.4	v
		V _{CC} = MAX, V _O = 2.4 V	V _{IH} = 2 V,	V _{IL} = 0.8 V,			40			40	
loz	<u>7</u>	V _{CC} = MAX, V _O = 0.4 V	V _{1H} = 2 V	V _{1L} - 0.8 V,			40			- 40	μA
- fi		V _{CC} = MAX,	VI = 5.5 V				1			1	mA
Чн		V _{CC} = MAX,	V ₁ = 2.4 V				40			40	μA
	A Inputs	V _{CC} ≃ MAX,	V _I ≠ 0.5 V,	Either G input at 2 V			- 40			- 40	μA
μL		V _{CC} = MAX,	V _I = 0.4 ∨,	Both G inputs at 0.4 V		·	- 1.6			- 1.6	
	Ğ Inputs	V _{CC} ≃ MAX,	V ₁ = 0.4 V				- 1.6			- 1.6	mΑ
los	\$	Vcc ≈ MAX			- 40		- 130	- 40		- 130	mA
lcc		V _{CC} ≈ MAX,	Data inputs = 0 V,	Output controis = 4.5 V		65	85		65	85	mА

† For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

T For conditions shown as MIN of MAX. Use the appropriate value specified under $\pm AII$ typical values are at $V_{CC} = 5 V$, $T_A = 25^{\circ}C$. § Not more than one output should be shorted at a time. switching characteristics, $V_{CC} = 5 V$, $T_A = 25^{\circ}C$ (see note 2)

PARAMETER	FROM	TO (OUTPUT)	TEST CONDITION	IS	MIN	түр	мах	UNIT
tPLH							16	ns
^t PHL			RL = 400 Ω, C	- 50 - 56			22	ns
tPZH	Any	Y	ης = 400 32, C	L = 50 pF			35	ns
^t PZL	Any						37	ns
^t PHZ			B 400 0				11	лs
^t PLZ			R _L = 400 Ω, C.	L=5pF			27	ns

NOTE 2: Load circuits and voltage waveforms are shown in Section 1.

POS" OFFICE BOX 655012 . DALLAS, TEXAS 75265

SN54366A, SN54368A SN74366A, SN74368A HEX BUS DRIVERS WITH 3 STATE OUTPUTS

recommended operating conditions

			SN5436 SN5436			SN74366A SN74368A		UNIT
_		MIN	NOM	мах	MIN	NOM	MAX	
Vcc	Supply voltage	4.5	5	5.5	4.75	5	5.25	V
VIH	High-level input voltage	2			2			v
VIL	Low-level input voltage			0.8			0.8	v
юн	High level output current			2			- 5.2	Am
10L	Low-level output current			32			32	mΑ
TA	Operating free-air temperature	- 55		125	0		70	°c

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PAR			TEST CONDITION	IS†		N54366			N74366 N74368		דואט
					MIN	TYP‡	MAX	MIN	түр‡	мах]
VII	ĸ	VCC ≈ MIN,	li≓ – 12 mA				- 1.5			- 1.5	v
va	· · ·	VCC = MIN,	V _{IH} = 2 V,	VIL = 0.8 V.	2.4	3.3		2.4	3.1		V
۷u	IH	I _{OH} ≈ MAX			2.4	د.د		2.4	3.1		, v
 vo		Vcc = MIN.	V _{IH} = 2 V,	V _{IL} = 0.8 V,			0.4			0.4	v
•0	L	IOL = 32 mA					0.4			0.4	v
		V _{CC} = MAX,	V _{IH} ≈ 2 V,	V _{IL} = 0.8 V,			40			40	
		V _O = 2.4 V					40	40		40	
loz	2	V _{CC} = MAX,	V _{IH} = 2 V	V _{IL} = 0.8 V,			40			- 40	μA
		Vo=0.4 V		_			40			- 40	
Ц		V _{CC} = MAX,	V ₁ = 5.5 V				1	_		1	mA
ЧH		V _{CC} = MAX,	V ₁ = 2.4 V				40			40	μA
	AInputs	V _{CC} = MAX,	V ₁ = 0.5 V,	Either G input at 2 V			- 40			- 40	uΑ
HL	Ainputs	V _{CC} = MAX,	V ₁ = 0.4 V,	Both G inputs at 0.4 V			- 1.6			- 1.6	mΑ
	G Inputs	V _{CC} = MAX,	V ₁ = 0.4 V				- 1.6			- 1.6	
los	ş	V _{CC} = MAX			- 40		130	- 40		- 130	mA
lcc		VCC = MAX,	Data inputs = 0 V,	Output controls = 4.5 V,		59	77		59	77	mΑ

For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

 \pm All typical values are at V_{CC} = 5 V, T_A = 25°C. § Not more than one output should be shorted at a time.

switching characteristics, $V_{CC} = 5 V$, $T_A = 25^{\circ}C$ (see note 2)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	TEST CON	DITIONS	MIN TYP	MAX	UNIT
^t PLH						17	ńs
^T PHL			B - 100 C	0 50 of		16	٥s
^t PZH	Απγ	Y	R _L = 400 Ω, C _L = 50 pF		35	nş	
tpzl	Any					37	ns.
^t PHZ			B 400 O			11	ns
^t PLZ			R _L = 400 Ω,	C _L = 5 pF		27	ns

NOTE 2: Load circuits and voltage waveforms are shown in Section 1.

-

POST OFFICE BOX 655012 . DALLAS, TEXAS 75265

SN54LS365A, SN54LS367A SN74LS365A, SN74LS367A HEX BUS DRIVERS WITH 3-STATE OUTPUTS

recommended operating conditions

			SN54LS365A SN54LS367A			SN74LS365A SN74LS367A		
		MIN	NOM	МАХ	MIN	NOM	мах	
Vcc	Supply voltage	4.5	5	5.5	4.75	5	5.25	v
VIH	High-level input voltage	2			2			v
VIL	Low-level input voltage			0.7			0.8	v
іон	High-level output current			- 1			- 2.6	mA
ιοι	Low-level output current			12			24	mA
т _А	Operating free-air temperature	- 55		125	0		70	°c

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PAR		TEST CONDITIONS [†]			154LS30 154LS30		S				
Vik		I F			MIN	TYP‡	МАХ	MIN	TYP‡	мах	
		V _{CC} = MIN,				- 1 <i>.</i> 5			- 1.5	v	
		VCC = MIN,	V _{IH} = 2 V,	VIL = MAX,	24			2.4	3.1		
۷o	н	I _{OH} = MAX			2.4	2.4 3.3		2.4	3.1		Ľ.
		V _{CC} = MIN,	V _{IH} = 2 V,	V _{IL} ≖MAX,		0.25	0.4		0.25	0.4	
. e -		IOL = 12 mA				Ų.23	0.4		0.25	U. 4	v
۷o	L	V _{CC} = MIN,	∨ _{1H} = 2 ∨,	V _{1L} = 0.8 V,					0.35	0.5	ľ
		l _{OL} = 24 mA							0.35	0.5	
		V _{CC} = MAX,	VIH = 2 ∨,	VIL = MAX,		20			20		
1.4-		Vo = 2.4 V					20			-20	μA
loz		V _{CC} = MAX,	V _{1H} = 2 ∨,	VIL = MAX,			- 20			- 20	ļ <u>"</u>
		V _O = 0.4 V					- 20			- 20	
4		V _{CC} = MAX,	V ₁ = 7 V				0.1			0.1	mΑ
Чн		VCC = MAX,	VI = 2.7 V				20			20	μA
	Ainputs	V _{CC} = MAX,	Vj = 0.5 V,	Either \overline{G} input at 2 V			20			20	μA
hL.	A linbuts	V _{CC} = MAX,	V _I = 0.4 V,	Both \overline{G} inputs at 0.4 V			- 0.4			- 0.4	mA
	G Inputs	V _{CC} = MAX,	V1 = 0.4 V				- 0.2			- 0.2	
los	ş	V _{CC} = MAX			40		- 225	- 40		- 225	mA
1¢¢		V _{CC} = MAX,	Data inputs = 0 V	Output controls = 4.5 V,		14	24		14	24	mA

† For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

 \ddagger All typical values are at V_{CC} = 5 V. T_A = 25°C.

§ Not more than one output should be shorted at a time, and the duration of the short circuit should not exceed one second.

TEXAS POST OFFICE BOX 655012 · DALLAS, TEXAS 75265

SN54LS365A, SN54LS367A SN74LS365A, SN74LS367A HEX BUS DRIVERS WITH 3-STATE OUTPUTS

PARAMETER	FROM (INPUT)	TO (OUTPUT)	TEST CON	DITIONS	ΜΙΝ ΤΥΡ	МАХ	UNIT
tPLH					10	16	ns
TPHL			R _L = 667 Ω, C _L = 45 pF	9	22	ns	
^t PZH	•		RL = 66712,	CL = 45 pF	19	35	ns
tPZL	Αηγ	Ý			24	40	пs
^t PHZ		[30	ns
tPLZ		1	R _L = 667 Ω,	Cլ = 5 pF		35	ns

switching characteristics, $V_{CC} = 5 V$, $T_A = 25^{\circ} C$ (see note 2)

NOTE 2: Load circuits and voltage waveforms are shown in Section 1.

1067

SN54LS366A, SN54LS368A SN74LS366A, SN74LS368A HEX BUS DRIVERS WITH 3-STATE OUTPUTS

recommended operating conditions

		SN54LS366A SN54LS368A			SN74LS366A SN74LS368A		
	MIN	NOM	мах	MIN	NOM	MAX	UNIT
Vcc Supply voltage	4.5	5	5.5	4.75		5.25	v
VIH High-level input voltage	2			2			v
VIL Low-level input voltage			0,7			0.8	V
OH High-level output current			1			- 2.6	mΑ
OL Low-level output current			12			24	mА
TA Operating free-air temperature	- 55		125	0		70	°c

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS T			SN54LS366A SN54LS368A			SN74LS366A SN74LS368A				
				MIN	TYP‡	мах	MIN	TYP‡	мах	1	
VII	ĸ	V _{CC} = MIN,	l _l = - 18 mA				- 1.5			- 1.5	v
	VOH	VCC = MIN,	V _{IH} = 2 V,	V _{IL} = MAX,	2.4	3.3		2.4	3.1		
۷C		IOH = MAX									V
	<u> </u>	Vcc = MIN,	VIH = 2 V.	V _{IL} = MAX,		0.05				0.4	
VOL	I _{OL} = 12 mA				0.25	0.4		0.25	0.4	v	
	V _{CC} = MIN,	V _{IH} = 2 V,	V _{IL} = 0.8 V,					0.35			
	^I OL [⇒] 24 mA							0.35	0.5		
		V _{CC} = MAX,	V _{IH} = 2 V,	VIL = MAX,			20				
1	_	Vo = 2.4 V					20			20	
102	loz	V _{CC} = MAX,	V _{IH} = 2 V,	VIL - MAX,	- 20		- 20	20	~		
		V _O = 0.4 V	,				- 20			- 20	
ħ		VCC = MAX.	V1 = 7 V				0.1			0.1	mΑ
ιн		V _{CC} = MAX,	V∣ = 2.7 V				20			20	μA
	Alinputs	VCC = MAX,	V ₁ = 0.5 V,	Either G input at 2 V			- 20			- 20	uΑ
ΊL	A inputs	V _{CC} - MAX,	V _I = 0.4 V,	Both G inputs at 0.4 V			- 0.4			- 0.4	mA
	G Inputs	V _{CC} = MAX,	V ₁ = 0.4 V				- 0.2			- 0.2	
los	5	V _{CC} ≂ MAX			- 40		- 225	- 40		- 225	mA
1cc		V _{CC} ≈ MAX,	Data inputs ≈ 0 V,	Output controls = 4.5 V,		12	21		12	21	mА

† For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

 \pm All typical values are at V_{CC} = 5 V, T_A = 25^oC. § Not more than one output should be shorted at a time, and the duration of the short circuit should not exceed one second.

SN54LS366A, SN54LS368A SN74LS366A, SN74LS368A Hex bus drivers with 3-state outputs

PARAMETER	FROM	TO (OUTPUT)	TEST CON	MIN	түр	мах		
	(INPUT)							
^t PLH	Any					7	15	ns
^t PHL		Y	RL = 667 Ω,	C ₁ = 45 pF		12 18 18 35	ns	
^t PZH				.cf - 45 be	[ns	
^t PZL						nş		
^t PHZ			R _L = 667 Ω,			32		
tPLZ.				С <u> </u> 5 рГ	35		ПS	

NOTE 2: Load circuits and voltage waveforms are shown in Section 1.

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any semiconductor product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

TI warrants performance of its semiconductor products and related software to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

Certain applications using semiconductor products may involve potential risks of death, personal injury, or severe property or environmental damage ("Critical Applications").

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS.

Inclusion of TI products in such applications is understood to be fully at the risk of the customer. Use of TI products in such applications requires the written approval of an appropriate TI officer. Questions concerning potential risk applications should be directed to TI through a local SC sales office.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards should be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or services described herein. Nor does TI warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used.

Copyright © 1996, Texas Instruments Incorporated