SDLS100

- Package Options Include Plastic "Small Outline" Packages, Ceramic Chip Carriers and Flat Packages, and Plastic and Ceramic DIPs
- Dependable Texas Instruments Quality and Reliability

description

These devices contain four independent 2-input OR gates.

The SN5432, SN54LS32 and SN54S32 are characterized for operation over the full military range of -55°C to 125°C. The SN7432, SN74LS32 and SN74S32 are characterized for operation from 0°C to 70°C.

FUNCTION TABLE (each gate)

INP	UTS	OUTPUT
Δ	B	Ŷ
н	х	н
х	н	н
L	L	L

logic symbol[†]

ì

[†] This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

Pin numbers shown are for D. J. N. or W packages.

SN5432, SN54LS32, SN54S32, SN7432, SN74LS32, SN74S32 QUADRUPLE 2-INPUT POSITIVE-OR GATES DECEMBER 1983 - REVISED MARCH 1988

SN5432, SN54LS32, SN54S32 ... J OR W PACKAGE SN7432 . . . N PACKAGE SN74LS32, SN74S32 . . . D OR N PACKAGE (TOP VIEW)

1A []1 1B []2 1Y []3 2A []4 2B []5 2Y []6	14 VCC 13 4B 12 4A 11 4Y 10 3B 9 3A
	8] 3Y
· · ·	-

SN54LS32, SN54S32 ... FK PACKAGE (TOP VIEW)

NC - No internal connection

logic diagram

positive logic

 $Y = A + B \text{ or } Y = \overline{\overline{A} \cdot \overline{B}}$

PRODUCTION DATA documents contain information current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warrenty. Production processing does not necessarily include testing of all parameters.

SN5432, SN54LS32, SN54S32, SN7432, SN74LS32, SN74S32 QUADRUPLE 2-INPUT POSITIVE-OR GATES

schematics (each gate)

Resistor values shown are nominal.

..

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

	D	
'LS32		
Operating free-air temperature:	SN54'	–55°C to 125°C
	SN74'	
Storage temperature range	•••••••••••••••••••••••••••••••••••••••	–65°C to 150°C
TE 1: Voltage values are with respect to netwo	rk ground terminal.	

recommended operating conditions

			SN5432			SN7432		UNIT
		MIN	NOM	MAX	MIN	NOM	MAX	UNTI
Vcc	Supply voltage	4.5	5	5.5	4.75	5	5.25	v
۷ін	Hgh-level input voltage	2			2	_		V
VIL	Low-level imput voltage			0.8			0,8	v
юн	High-level output current			0.8			~ 0.8	mA
OL	Low-level output current			16			16	Μm
TA	Operating free-air temperature	55		125	0		70	°C

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER		TEST CONDITIONS †			SN5432		SN7432			UNIT
PARAMETER				MIN	TYP‡	ΜΑΧ	MIN	TYP‡	MAX	UNIT
VIK	VCC = MIN,	lj = — 12 mA				- 1.5			- 1,5	v
V _{OH}	V _{CC} = MIN,	V _{IH} ≈ 2 V,	I _{OH} ≠ − 0.8 mA	2.4	3.4		2.4	3.4		V
VOL	$V_{CC} = MIN,$	_ V <u>IL</u> ≄ 0.8 V,	loL = 16 mA		0,2	0.4		0.2	0.4	V
4	Vcc = MAX,	V ₁ = 5.5 V				1			1	mΑ
ЦН	V _{CC} = MAX,	V ₁ = 2.4 V				40			40	μA
hL.	V _{CC} = MAX,	V ₁ = 0.4 V				- 1.6			- 1.6	mA
OSS	VCC = MAX			- 20		- 55	- 18		- 55	mА
ІССН	V _{CC} = MAX,	See Note 2			15	22		15	22	mA
	VCC * MAX,	V1 = 0 V	_		23	38		23	38	mA

† For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions. ‡ All typical values are at $V_{CC} = 5 V$, $T_A = 25^{\circ}C$. § Not more than one output should be shorted at a time.

Ì

.

NOTE 2: One input at 4.5 V, all others at GND.

switching characteristics, V_{CC} = 5 V, T_A = 25°C (see note 3)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	TEST CON	MIN	TYP	МАХ	UNIT	
TPLH	A or 8	×	R _L = 400 Ω,	C. = 15 = 5		10	15	ris
^t PHL	7018	1	κ <u>ι</u> - 400 sz,	CL = 15 pF		14	22	ns

NOTE 3: Load circuits and voltage waveforms are shown in Section 1.

SN54LS32, SN74LS32 QUADRUPLE 2 INPUT POSITIVE OR GATES

recommended operating conditions

	SN54LS32 SN74LS32	
	MIN NOM MAX MIN NOM MAX	UNIT
V _{CC} Supply voltage	4.5 5 5.5 4.75 5 5.25	V
VIH Hgh-level input voitage	2 2	V
VIL Low-level input voltage	0.7 0.8	V
OH High-level output current	-0.4 -0.4	mĀ
OL Low-level output current	4 8	mA
TA Opertating free-air temperature	- 55 125 0 70	°C

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

					SN54LS	32		SN74LS	32	
PARAMETER		TEST CONDIT	TIONS T	MIN	TYP‡	MAX	MIN	TYP‡	MAX	UNIT
Vik	V _{CC} - MIN,	l ₁ = - 18 mA				- 1.5			- 1.5	v
∨он	VCC = MIN,	V _{IH} = 2 V,	I _{OH} = - 0.4 mA	2.5	3.4		2.7	3.4		V
	V _{CC} = MIN,	VIL = MAX,	IOL = 4 mA		0.25	0.4		0.25	0.4	v
VOL	V _{CC} = MIN,	VIL = MAX,	10L = 8 mA					0.35	0.5	v
li l	V _{CC} = MAX,	V ₁ = 7 V				0.1			0.1	mA
- нн	V _{CC} = MAX,	V _I = 2.7 V			•	20			20	μA
IIL.	VCC = MAX,	VI = 0.4 V				- 0.4			- 0.4	mA
10S§	VCC = MAX			- 20		- 100	- 20		- 100	mA
Іссн	V _{CC} = MAX,	See Note 2			3.1	6.2		3.1	6.2	mA
ICCL	V _{CC} = MAX,	V ₁ = 0 V			4.9	9.8		4.9	9.8	mΑ

† For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

f All typical values are at $V_{CC} = 5 V$, $T_A = 25^{\circ}C$. § Not more than one output should be shorted at a time and the duration of the short-circuit should not exceed one second. NOTE 2: One input at 4.5 V, all others at GND.

switching characteristics, $V_{CC} = 5 V$, $T_A = 25^{\circ}C$ (see note 3)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	TEST COM	MIN	түр	МАХ	UNIT	
^t PLH	1 or 0	V		0 - 15 -		14	22	пs
^t PHL	A or B	T	$R_{L} = 2 k \Omega$,	С _L = 15 р г		14	22	ns

NOTE 3: Load circuits and voltage waveforms are shown in Section 1.

recommended operating conditions

			SN54S3	2		SN74S3	2	
		MIN	NOM	MAX	MIN	NOM	MAX	UNIT
Vcc	Supply voltage	4.5	5	5.5	4.75	5	5.25	v
Viн	High-level input voltage	2			2			v
VIL	Low-level input voltage			0.8			0.8	v
юн	High-level output current			1			- 1	mΑ
^I OL	Low-level output current			20			20	mΑ
TA	Operating free-air temperature	- 55		125	0		70	°C

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

		TEST CONDIT			SN54S3	2				
PARAMETER		TEST CONDIT	IONS I	MIN	TYP ‡	MAX	MIN	TYP #	MAX	UNIT
VIK	VCC = MIN,	lj = — 18 mA				- 1.2			- 1.2	V
∨он	V _{CC} = MIN,	V _{IH} = 2 V,	10H = - 1 mA	2.5	3.4		2.7	3.4		V
VoL	V _{CC} = MIN,	V _{IL} = 0.8 V,	I _{OL} = 20 mA			0.5			0.5	V
4	V _{CC} = MAX,	V ₁ = 5.5 V				1			1	mA
Чн	VCC = MAX,	VI = 2.7 V				50			50	μA
ΪIL	VCC = MAX,	Vi = 0.5 V				- 2			- 2	mA
los §	V _{CC} = MAX			- 40		— 1 00	- 40		- 100	mA
Іссн	V _{CC} = MAX,	See Note 2			18	32		18	32	mA
CCL	VCC = MAX,	V1 = 0 V			- 38	68	[38	68	mA

2

-

† For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions. ‡ All typical values are at $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$. § Not more than one output should be shorted at a time and the duration of the short-circuit should not exceed one second. NOTE 2: One input at 4.5 V, all others at GND.

switching characteristics, VCC = 5 V, TA = 25° C (see note 3)

PARAMETER	FROM (INPUT)	TÓ (OUTPUT)	TEST CON	MIN TYP	MAX	UNIT	
tPLH	A P	v	D - 200 O	C _I = 15 pF	4	7	ns
tPHL	А ог В	· · · · · · · · · · · · · · · · · · ·	RL ≖ 280 Ω,		4	7	ns
^t PLH	A of P	v I	RL = 280 Ω,	C ₁ = 50 pF	5		пs
tPHL .	A or 8				5		ns

NOTE 3: Load circuits and voltage waveforms are shown in Section 1.

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any semiconductor product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

TI warrants performance of its semiconductor products and related software to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

Certain applications using semiconductor products may involve potential risks of death, personal injury, or severe property or environmental damage ("Critical Applications").

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS.

Inclusion of TI products in such applications is understood to be fully at the risk of the customer. Use of TI products in such applications requires the written approval of an appropriate TI officer. Questions concerning potential risk applications should be directed to TI through a local SC sales office.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards should be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or services described herein. Nor does TI warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used.

Copyright © 1996, Texas Instruments Incorporated