### SN54290, SN54293, SN54LS290, SN54LS293, SN74290, SN74293, SN74LS290, SN74LS293 DECADE AND 4-BIT BINARY COUNTERS SDLS097 MARCH 1974 - REVISED MARCH 1988

'290, 'LS290 ... DECADE COUNTERS '293, 'LS293 ... 4-BIT BINARY COUNTERS

 GND and V<sub>CC</sub> on Corner Pins (Pins 7 and 14 Respectively)

### description

The SN54290/SN74290, SN54LS290/SN74LS290, SN54293/SN74293, and SN54LS293/SN74LS293 counters are electrically and functionally identical to the SN5490A/SN7490A, SN54LS90/SN74LS90, SN5493A/SN7493A, and SN54LS93/SN74LS93, respectively. Only the arrangement of the terminals has been changed for the '290, 'LS290, '293, and 'LS293.

Each of these monolithic counters contains four master-slave flip-flops and additional gating to provide a divide-by-two counter and a three-stage binary counter for which the count cycle length is divide-by-five for the '290 and 'LS290 and divide-by-eight for the '293 and 'LS293.

All of these counters have a gated zero reset and the '290 and 'LS290 also have gated set-to-nine inputs for use in BCD nine's complement applications.

To use the maximum count length (decade or four-bit binary) of these counters, the B input is connected to the  $Q_A$  output. The input count pulses are applied to input A and the outputs are as described in the appropriate function table. A symmetrical divide-byten count can be obtained from the '290 and 'LS290 counters by connecting the  $Q_D$  output to the A input and applying the input count to the B input which gives a divide-byten square wave at output  $Q_A$ .

SN54290, SN54LS290, S**8**54293, SN54LS293...J OR W PACKAGE SN74290, SN74293...N PACKAGE SN74LS290, SN74LS293...D OR N PACKAGE (TOP VIEW)

|                   | 7290                 | 2              | 93                   |
|-------------------|----------------------|----------------|----------------------|
| R9(1) 41          | U14 VCC              |                |                      |
| NC 02<br>R9(2) 03 | 13 RO(2)<br>12 RO(1) |                | 13 R0(2)<br>12 R0(1) |
| QC □4             | 11) скв              | oc⊡₄           | тр скв               |
| OB 🔤 5            |                      | <b>0</b> 8 ∏ 5 | 10 СКА               |
| NC 🗍 6            | ₀∏ Q <sub>A</sub>    | NC 🗍 6         | ₽₽₽₳                 |
| GND [ 7           | 8 🗖 QD               |                | 8 ] OD               |

#### SN54LS290, SN54LS293 . . . FK PACKAGE (TOP VIEW)





'LS293



NC - No internal connection

PRODUCTION DATA documents contain information current as of publication data. Products conform to aportfications par the torms of Taxas instruments standard warrsary. Production processing does not necessarily include testing of all parameters. Texas 🖑

## SN54290, SN54293, SN54LS290, SN54LS293, SN74290, SN74293, SN74LS290, SN74LS293 Decade and 4-bit binary counters

logic symbols<sup>†</sup>



 $^\dagger$  These symbols are in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12. Pin numbers shown are for D, J, N, and W packages.



# SN54290, SN54293, SN54LS290, SN54LS293, SN74290, SN74293, SN74LS290, SN74LS293 Decade and 4-bit binary counters

| CD CO | 90, '<br>IUN'<br>See I | T SE | ου  | ENC | E 81- |
|-------|------------------------|------|-----|-----|-------|
| COUNT |                        | ουτ  | PUT |     | COUN  |
|       | aD                     | αc   | αB  | QA  |       |
| 0     | L                      | L    | L   | L   | 0     |
| 1     | Ł                      | L    | L   | н   | 1     |
| 2     | L                      | L    | н   | £   | 2     |
| 3     | L                      | L    | н   | н   | 3     |
| 4     | L                      | н    | L   | L   | 4     |
| 5     | L                      | н    | L   | н   | 5     |
| 6     | L                      | н    | н   | L   | 6     |
| 7     | L                      | н    | н   | н   | 7     |
| 8     | н                      | L    | L   | L   | 8     |
| 9     | н                      | L    | L   | н   | 9     |

| 81-Q1   | 90, '<br>JINA<br>ee N | ARY | (5-: | 2) | 6 |
|---------|-----------------------|-----|------|----|---|
| YOU INT |                       | ουτ | PUT  |    |   |
|         | ٩A                    | QD. | QC.  | QB | R |
| 0       | L                     | L   | L    | ι  |   |
| 1       | jι                    | L   | L    | н  |   |
| 2       | Ĺ                     | L   | н    | L  |   |
| 3       | L                     | L   | н    | н  |   |
| 4       | L                     | н   | L    | L  |   |
| 5       | н                     | Ł   | L    | L  |   |
| 6       | н                     | L   | L    | н  |   |
| 7       | н                     | L   | н    | L  | _ |
| 8       | н                     | L   | н    | н  |   |
| 9       | н                     | н   | L    | L  |   |

| RES   | 290, LS290<br>RESET/COUNT FUNCTION TABLE |        |       |       |                |     |    |  |  |  |  |  |  |  |
|-------|------------------------------------------|--------|-------|-------|----------------|-----|----|--|--|--|--|--|--|--|
|       | RESET                                    | INPUTS |       | •     | ουτ            | PUT |    |  |  |  |  |  |  |  |
| Ro(1) | R0(2)                                    | Rg(1)  | Rg(2) | QD    | Q <sub>C</sub> | Q8  | 0A |  |  |  |  |  |  |  |
| н     | н                                        | L      | X     | L     | L              | L   | L  |  |  |  |  |  |  |  |
| н     | н                                        | ×      | L     | L     | L              | L   | Ļ  |  |  |  |  |  |  |  |
| ×     | ×                                        | н      | н     | н     | £              | L   | н  |  |  |  |  |  |  |  |
| ×     | L                                        | ×      | L     |       | CO             | UNT |    |  |  |  |  |  |  |  |
| L     | x                                        | L      | X     | COUNT |                |     |    |  |  |  |  |  |  |  |
| L     | x                                        | x      | L     | COUNT |                |     |    |  |  |  |  |  |  |  |
| x     | L                                        | L      | x     | COUNT |                |     |    |  |  |  |  |  |  |  |

#### 293, 15293 RESET/COUNT FUNCTION TABLE RESET INPUTS OUTPUT

 Ro(1)
 Ro(2)
 QD
 QC
 QB
 QA

 H
 H
 L
 L
 L
 L
 L
 L
 L
 L
 L
 L
 L
 L
 L
 L
 L
 L
 L
 L
 L
 L
 L
 L
 L
 L
 L
 L
 L
 L
 L
 L
 L
 L
 L
 L
 L
 L
 L
 L
 L
 L
 L
 L
 L
 L
 L
 L
 L
 L
 L
 L
 L
 L
 L
 L
 L
 L
 L
 L
 L
 L
 L
 L
 L
 L
 L
 L
 L
 L
 L
 L
 L
 L
 L
 L
 L
 L
 L
 L
 L
 L
 L
 L
 L
 L
 L
 L
 L
 L
 L
 L
 L
 L
 L
 L
 L
 L
 L
 <

| (5    | See N          | lote | C)  |    |
|-------|----------------|------|-----|----|
| COUNT |                | 001  | PUT |    |
|       | ٥ <sub>D</sub> | ac   | QB  | ٩A |
| 0     | Ľ              | L    | L   | L  |
| 1     | L              | L    | L   | н  |
| 2     | L              | L    | н   | L  |
| 3     | L              | L    | н   | н  |
| 4     | L              | н    | L   | Ł  |
| 5     | Ļ              | н    | L   | н  |
| 6     | L.             | н    | н   | L  |
| 2     | L              | н    | н   | н  |
| 8     | н              | L    | L   | L  |
| 9     | н              | L.   | L   | н  |
| 10    | н              | L    | н   | L  |
| 11    | н              | L    | н   | н  |
| 12    | н              | н    | L   | L  |
| 13    | н              | н    | L   | н  |
| 14    | н              | н    | н   | L  |
| 15    | н              | н    | н   | н  |

293, LS293 COUNT SEQUENCE

# logic diagrams (positive logic)

count.



NOTES: A. Output  $\mathbf{Q}_{\mathbf{A}}$  is connected to input B for BCD count. B. Output  $\mathbf{Q}_{\mathbf{D}}$  is connected to input A for bi-quinary

C. Output  $Q_A$  is connected to input B. D. H = high level, L = low level, X = irrelevant

'293, 'LS293



Pin numbers shown are for D, J, N, and W packages. The J and K inputs shown without connection are for reference only and are functionally at a high level.



# SN54290, SN54293, SN74290, SN74293 Decade and 4-bit binary counters

### schematics of inputs and outputs



## absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

| Supply voltage, VCC (see Note 1)          |             | - |     |     |   |     |     |   |       |  |   | 7 V                                   |
|-------------------------------------------|-------------|---|-----|-----|---|-----|-----|---|-------|--|---|---------------------------------------|
| Input voltage                             |             |   |     |     |   |     |     |   |       |  |   | <b>5.5</b> V                          |
| Interemitter voltage (see Note 2)         |             |   |     |     |   |     |     |   |       |  |   |                                       |
| Operating free-air temperature range: SN5 | 4' Circuits |   |     |     |   |     |     |   |       |  | - | –55°C to 125°C                        |
| SN7                                       | 4' Circuits |   |     |     |   |     |     |   |       |  |   | $\cdot = 0^{\circ}C$ to $70^{\circ}C$ |
| Storage temperature range                 |             | · | · · | • • | • | • • | • • | • | <br>• |  | - | –65°C to 150°C                        |

NOTES: 1. Voltage values, except interemitter voltage, are with respect to network ground terminal. 2. This is the voltage between two emitters of a multiple-amitter transistor. For these circuits, this rating applies between the two R<sub>0</sub> inputs, and for the '290 circuit, it also applies between the two R9 inputs.

#### recommended operating conditions

|                                                  |              |     | SN5 | 4'   |      | SN74' |       |      |
|--------------------------------------------------|--------------|-----|-----|------|------|-------|-------|------|
|                                                  |              | MIN | NOM | MAX  | MIN  | NOM   | MAX   | UNIT |
| Supply voltage, VCC                              |              | 4.5 | 5   | 5.5  | 4.75 | 5     | 5.25  | V    |
| High-level output current, IOH                   |              |     |     | -800 |      |       | · 800 | μA   |
| Low-level output current, IOL                    |              |     |     | 16   |      |       | 16    | mA   |
|                                                  | A input      | 0   |     | 32   | 0    |       | 32    |      |
| Count frequency, fcount                          | Binput       | 0   |     | 16   | 0    |       | 16    | MHZ  |
|                                                  | Ainput       | 15  |     |      | 15   |       |       |      |
| Pulse width, t <sub>w</sub>                      | B input      | 30  |     |      | 30   |       |       | ns   |
|                                                  | Reset inputs | 15  |     |      | 15   |       |       | 1    |
| Reset inactive-state setup time, t <sub>su</sub> |              | 25  |     |      | 25   |       |       | ns   |
| Operating free-air temperature, TA               |              | -55 |     | 125  | 0    |       | 70    | С    |



## SN54290, SN54293, SN74290, SN74293 **DECADE AND 4-BIT BINARY COUNTERS**

#### electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

|     |                                |            | TEST CONDITIO                                                                                       |       |     | <b>'29</b> 0 |       |     | '293 |       | 1    |
|-----|--------------------------------|------------|-----------------------------------------------------------------------------------------------------|-------|-----|--------------|-------|-----|------|-------|------|
|     | PARAMETER                      |            | TESI CONDITIO                                                                                       | 112   | MIN | TYP          | MAX   | MIN | TYP  | MAX   | UNIT |
| VIН | High-level input voltage       |            |                                                                                                     |       | 2   |              |       | 2   |      |       | V    |
| VIL | Low-level input voltage        |            | 1                                                                                                   |       | 1   |              | 0.8   | 1   |      | 0.8   | v    |
| Vik | Input clamp voltage            | -          | V <sub>CC</sub> = MIN. I <sub>I</sub> = -1                                                          | 2 mA  |     |              | -1.5  |     |      | - 1.5 | V    |
| VOH | High-level output voltage      |            | V <sub>CC</sub> = MIN, V <sub>IH</sub> = 2 V,<br>V <sub>IL</sub> = 0.8 V, I <sub>OH</sub> = -800 µA |       |     | 3.4          |       | 2.4 | 3.4  |       | v    |
| VOL | Low-level output voltage       |            | V <sub>CC</sub> = MIN, V <sub>IH</sub> =<br>V <sub>IL</sub> = 0.8 V, I <sub>OL</sub> =              |       |     | 0.2          | 0.4   |     | 0.2  | 0.4   | v    |
| 4   | Input current at maximum inp   | ut voltage | VCC = MAX, VI = 5.                                                                                  | 5 V   | 1   |              | 1     |     |      | 1     | mA   |
|     |                                | Any reset  |                                                                                                     |       |     |              | 40    |     |      | 40    |      |
| нн  | High-level input current       | Ainput     | VCC = MAX, VI = 2.                                                                                  | 4 V   |     |              | 80    |     |      | 80    | μА   |
|     |                                | 8 input    | ]                                                                                                   |       |     |              | 120   |     |      | 80    | ]    |
|     |                                | Any reset  |                                                                                                     |       | 1   |              | -1.6  |     |      | -1.6  |      |
| 112 | Low-level input current        | A input    | $V_{CC} = MAX, V_1 = 0.$                                                                            | 4∨    |     |              | - 3.2 |     |      | -3.2  | mA   |
|     |                                | Binput     |                                                                                                     |       |     |              | -4.8  |     |      | -3.2  | 1    |
|     | Short-circuit output current § |            | V <sub>CC</sub> = MAX                                                                               | SN54' | -20 |              | -57   | -20 |      | -57   | -    |
| OS  | Shore-circuit output currents  |            |                                                                                                     | SN74' | -18 |              | -57   | -18 | _    | -57   | mA   |
| 1cc | Supply current                 |            | VCC - MAX, See No                                                                                   | te 3  |     | 29           | 42    |     | 26   | 39    | mΑ   |

<sup>1</sup>For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

 $1\,\rm All$  typical values are at  $V_{CC}$  = 5 V, T  $_A$  = 25°C. \$Not more than one output should be shorted at a time.

 ${}^{\bullet} \Omega_{A}$  outputs are tested at  $I_{OL}$  + 16 mA plus the limit value of  $I_{IL}$  for the B input. This permits driving the B input while maintaining full fan-out capability

NOTE 3:  $I_{CC}$  is measured with all outputs open, both  $R_0$  inputs grounded following momentary connection to 4.5 V, and all other inputs grounded.

|                  | FROM     | то                              | TEAT CONDITIONS |     | '290 |     |     | <b>´293</b> |     |     |
|------------------|----------|---------------------------------|-----------------|-----|------|-----|-----|-------------|-----|-----|
| PARAMETER#       | (INPUT)  | (OUTPUT)                        | TEST CONDITIONS | MIN | TYP  | MAX | MIN | ТҮР         | MAX |     |
| 4                | A        | QA                              |                 | 32  | 42   |     | 32  | 42          |     |     |
| <sup>f</sup> max | В        | 0 <sub>B</sub>                  |                 | 16  |      |     | 16  |             |     | MHz |
| t₽LH             | A        | 0 <sub>A</sub>                  | -               |     | 10   | 16  |     | 10          | 16  |     |
| <sup>t</sup> PHL |          | U <sub>A</sub>                  |                 | 1   | 12   | 18  | 1   | 12          | 18  | ns  |
| <sup>t</sup> PLH | A        | ۵ <sub>D</sub>                  | -               |     | 32   | 48  |     | 46          | 70  |     |
| <sup>t</sup> PHL |          | 20                              | CL = 15 pF.     |     | 34   | 50  |     | 46          | 70  | ns  |
| TPLH             | В        | QB                              |                 |     | 10   | 16  |     | 10          | 16  |     |
| TPHL             |          | αB                              |                 |     | 14   | 21  |     | 14          | 21  | ns  |
| <sup>1</sup> PLH | В        | Q <sub>C</sub>                  | Jee Note 4      |     | 21   | 32  |     | 21          | 32  |     |
| tPHL             |          | ω(,                             |                 |     | 23   | 35  | 1   | 23          | 35  | ns  |
| <sup>t</sup> PLH | 8        | ۵D                              |                 |     | 21   | 32  | Τ   | 34          | 51  | ns  |
| tPHL             |          |                                 |                 |     | Ž3   | 35  | 1   | 34          | 51  |     |
| <b>TPHL</b>      | Set to 0 | Any                             |                 |     | 26   | 40  | 1   | 26          | 40  | ris |
| tPLH             | Set-to-9 | QA. QD                          |                 | [   | 20   | 30  |     |             |     |     |
| <sup>t</sup> PHL |          | a <sub>B</sub> , a <sub>C</sub> | 1               |     | 26   | 40  | Γ   |             |     | ns  |

### switching characteristics, VCC = 5 V, TA = 25° C

#fmax = maximum count frequency

tPLH = propagation delay time, low-to-high-level output

tpHL = propagation delay time, high-to-low-level output

NOTE 4: Load circuits and voltage waveforms are shown in Section 1.

# SN54LS290, SN54LS293, SN74LS290, SN74LS293 Decade and 4-bit binary counters

### schematics of inputs and outputs



### absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

| Supply voltage, V <sub>CC</sub> (see Note 5) |           |             | <br> | 7 V                                |
|----------------------------------------------|-----------|-------------|------|------------------------------------|
| Input voltage: R inputs                      |           |             | <br> | 7 V                                |
| A and B inputs                               |           |             | <br> | 5.5 V                              |
| Operating free-air temperature range:        | SN54LS290 | , SN54LS293 | <br> | . –55°C to 125°C                   |
|                                              | SN74LS290 | , SN74LS293 | <br> | 0°C to 70°C                        |
| Storage temperature range                    |           |             | <br> | $-65^{\circ}$ C to $150^{\circ}$ C |

NOTE 5: Voltage values are with respect to network ground terminal.

### recommended operating conditions

|                                                  |              | s   | N54LS |      |      | רואט - |      |      |
|--------------------------------------------------|--------------|-----|-------|------|------|--------|------|------|
|                                                  |              | MIN | NOM   | MAX  | MIN  | NOM    | MAX  | UNIT |
| Supply voltage, VCC                              |              | 4.5 | 5     | 5.5  | 4.75 | 5      | 5.25 | v    |
| High-level output current, IOH                   |              | -   |       | -400 |      |        | -400 | μA   |
| Low-level output current, IOL                    |              |     |       | 4    |      | -      | 8    | mA   |
| · · · · · · · · · · · · · · · · · · ·            | A input      | 0   |       | 32   | 0    |        | 32   |      |
| Count frequency, fcount                          | Binput       | 0   |       | 16   | 0    |        | 16   | MH:  |
|                                                  | A input      | 15  |       |      | 15   |        |      |      |
| Pulse width, t <sub>w</sub>                      | Binput       | 30  |       |      | 30   |        |      | ns   |
|                                                  | Reset inputs | 30  |       |      | 30   |        |      |      |
| Reset inactive-state setup time, t <sub>su</sub> |              | 25  |       |      | 25   | -      |      | ns   |
| Operating free-air temperature, TA               |              | -55 |       | 125  | 0    |        | 70   | C    |



# SN54LS290, SN54LS293, SN74LS290, SN74LS293 DECADE AND 4-BIT BINARY COUNTERS

|     | 040 ANE          | ***            | TE                                                               | TONDITION              | int         |     | SN54LS           | ť    | SN74LS' |      |      |      |
|-----|------------------|----------------|------------------------------------------------------------------|------------------------|-------------|-----|------------------|------|---------|------|------|------|
|     | PARAME           | IEM            | TE                                                               | ST CONDITION           | 19 '        | MIN | TYP <sup>‡</sup> | MAX  | MIN     | TYP‡ | MAX  | רואט |
| VIН | High-level inpu  | it voltage     |                                                                  |                        |             | 2   |                  |      | 2       |      |      | v    |
| VIL | Low-level inpu   | t voltage      |                                                                  |                        |             |     |                  | 0.7  |         |      | 0.8  | v    |
| Viк | Input clamp vo   | ltage          | V <sub>CC</sub> = MIN,                                           | lj = -18 mA            | ·           |     |                  | -1.5 |         |      | -1.5 | V    |
| ∨он | High-level outp  | out voltage    | V <sub>CC</sub> = MIN,<br>V <sub>IL</sub> = V <sub>IL</sub> mex, |                        | A           | 2.5 | 3.4              |      | 2.7     | 3.4  |      | v    |
|     |                  |                | VCC = MIN,                                                       | VIH = 2 V,             | IOL = 4 mA¶ |     | 0.25             | 0.4  |         | 0.25 | 0.4  |      |
| VOL | Low-level outp   | ut voltage     | VIL = VIL max                                                    |                        | IOL = 8 mA  |     |                  |      |         | 0.35 | 0.5  | V V  |
|     | Input current    | Any reset      | V <sub>CC</sub> = MAX,                                           | V  = 7 V               |             |     |                  | 0.1  | 1       |      | 0.1  |      |
| ı.  | at maximum       | A input        |                                                                  |                        |             |     |                  | 0.2  |         |      | 0,2  |      |
| łi. | input voltage    | B of 'LS290    | V <sub>CC</sub> = MAX,                                           | V <sub>1</sub> = 5.5 V |             |     |                  | 0.4  |         |      | 0,4  | mA   |
|     | inpat vortage    | B of "L\$293   |                                                                  |                        |             |     |                  | 0.2  | 1       |      | 0.2  |      |
|     |                  | Any reset      |                                                                  |                        |             |     |                  | 20   |         |      | 20   |      |
| Чн  | High-levet       | A input        | V <sub>CC</sub> = MAX,                                           | V. = 17V               |             |     |                  | 40   |         |      | 40   |      |
| чн  | input current    | B of 'L\$290   |                                                                  | vj - 2.7 v             |             |     |                  | 80   |         |      | 80   | μA   |
|     |                  | B of 'LS293    |                                                                  |                        |             |     |                  | 40   |         |      | 40   |      |
|     |                  | Any reset      |                                                                  |                        |             |     |                  | 0.4  |         |      | -0.4 |      |
| 1   | Low-level        | A input        | Vcc=MAX,                                                         | Vi = 0.4 V             |             |     |                  | -2.4 |         |      | 2.4  |      |
| ΗL  | input current    | B of 'LS290    | VCC - MAA,                                                       | 41 - 0.4 4             |             |     |                  | -3.2 |         |      | 3.2  | mA   |
|     |                  | B of 'LS293    |                                                                  |                        |             |     |                  | -1.6 |         |      | -1.6 | 1    |
| los | Short-circuit or | utput current§ | V <sub>CC</sub> = MAX                                            |                        |             | 20  |                  | -100 | -20     |      | -100 | mА   |
| lcc | Supply current   |                | VCC = MAX,                                                       | See Note 3             | 'L\$290     |     | 9                | 15   |         | 9    | 15   |      |
| 100 |                  |                |                                                                  | 300 NO(0 3             | 'LS293      |     | 9                | 15   |         | 9    | - 15 | mA   |

<sup>†</sup>For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

 $\frac{2}{c}$  All typical values are at V<sub>CC</sub> = 5 V, T<sub>A</sub> = 25<sup>o</sup>C.

Nut more than one output should be shorted at a time, and duration of the short-circuit should not exceed one second.

 $Q_A$  outputs are tested at specified  $I_{OL}$  plus the limit value of  $I_{IL}$  for the B input. This permits driving the B input while maintaining full fan-out capability.

NOTE 3: ICC is measured with all outputs open, both R<sub>0</sub> inputs grounded following momentary connection to 4.5 V, and all other inputs grounded,

### switching characteristics, VCC = 5 V, TA = 25°C

| PARAMETER#       | FRÖM<br>(INPUT) | TO<br>(OUTPUT) | TEST CONDITIONS                                                  | 'LS290     |     |     | 'LS293 |     |     |          |
|------------------|-----------------|----------------|------------------------------------------------------------------|------------|-----|-----|--------|-----|-----|----------|
|                  |                 |                |                                                                  | MIN        | TYP | MAX | MIN    | ТҮР | MAX | רואט -   |
| ŕmax             | A               | QA             | $C_{L} = 15 \text{ pF},$ $R_{L} = 2 \text{ k}\Omega,$ See Note 4 | 32         | 42  |     | 32     | 42  |     | MHz      |
|                  | В               | QB             |                                                                  | 16         |     |     | 16     |     |     |          |
| tPLH             | A               | Q <sub>A</sub> |                                                                  |            | 10  | 16  | 1      | 10  | 16  | ns       |
| 1PH L            |                 |                |                                                                  |            | 12  | 18  |        | 12  | 18  |          |
| 1PLH             | A               | QD             |                                                                  |            | 32  | 48  |        | 46  | 70  | ns       |
| IPHL             |                 |                |                                                                  |            | 34  | 50  |        | 46  | 70  |          |
| <sup>t</sup> ₽LH | В               | QB             |                                                                  |            | 10  | 16  | 1      | 10  | 16  | ns ns    |
| трнг             |                 |                |                                                                  |            | 14  | 21  |        | 14  | 21  |          |
| тр∟н             | В               | o <sub>c</sub> |                                                                  | [          | 21  | 32  |        | 21  | 32  | ns ns    |
| tPHL             |                 |                |                                                                  |            | 23  | 35  |        | 23  | 35  |          |
| TPLH             | в               | a <sub>D</sub> |                                                                  |            | 21  | 32  |        | 34  | 51  | - ns     |
| <sup>T</sup> PHL |                 |                |                                                                  |            | 23  | 35  |        | 34  | 51  |          |
| <sup>t</sup> PHL | Set to 0        | Any            |                                                                  |            | 26  | 40  |        | 26  | 40  | ns       |
| <sup>t</sup> PLH | Set-to-9        | QA, QD         |                                                                  |            | 20  | 30  |        | -   |     | <u>†</u> |
| <sup>t</sup> PHL |                 | QB, QC         |                                                                  | <b>—</b> — | 26  | 40  |        |     |     | ns       |

#fmax = maximum count frequency

tpLH = propagation delay time, low-to-high-level output

tpHL = propagation delay time, high-to-low-level output

NOTE 4: Load circuits and voltage waveforms are shown in Section 1.



### **IMPORTANT NOTICE**

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any semiconductor product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

TI warrants performance of its semiconductor products and related software to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

Certain applications using semiconductor products may involve potential risks of death, personal injury, or severe property or environmental damage ("Critical Applications").

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS.

Inclusion of TI products in such applications is understood to be fully at the risk of the customer. Use of TI products in such applications requires the written approval of an appropriate TI officer. Questions concerning potential risk applications should be directed to TI through a local SC sales office.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards should be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or services described herein. Nor does TI warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used.

Copyright © 1996, Texas Instruments Incorporated