SDLS092

- Latched Data Inputs Serve as Buffer Register and Can also: Synchronize Data Acquisition
 - "Debounce" Mechanical Switch Input
- Cascading Input P0 and Output P1 Provides "Busy"Signal Inhibiting All Lower-Order Bits
- Full TTL Compatibility
- Use for:
 Priority Interrupt
 Synchronous Priority Line Selection

description

The SN54278 and SN74278 each consist of four data latches, full priority output gating, and a cascading gate. The highest-order data applied at a D latch input is transferred to the appropriate Y output while the strobe input is high, and when the strobe goes low all data is latched. The cascading input PO is fully overriding and on the highest-order package this input must be held at a low logic level. The P1 output is intended for connection to the P0 input of the next lower-order package and will provide a "busy" (high-level) signal to inhibit all subsequent lowerorder packages.

After the overriding P0 input, the order of priority is D1, D2, D3, and D4, respectively, within the package.

MAY 1972-REVISED MARCH 1988

	SN54278 J OR W PACKAGE SN74278 N PACKAGE (TOP VIEW)												
	_												
STRB	d٦		Vcc										
D3		13	D2										
D4	d3	12	D1										
P0	₫٩	110	NC										
P1	đ۶	10	Y1										
Y4	Цe	Be	Y2										
GND	d7	8	Y3										

NC-No internal connection

	FUNCTION TABLE															
INPUTS						NTE TCH		-	OUTPUTS							
PO	G	D1	D2	D3	D4	۵ı	ā2	āз	ā	Y1	Y2	Υ3	٧4	P1		
L	н	н	X	X	X	L	Х	х	х	н	L	L	L	н		
L	н	ι	Н	х	х	н	L	х	x	L	н	Ł	L	н		
[L	н	L	L	н	x	Н	н	L	х	L	Ł	н	Ł	н		
L	н	L	L	L	н	н	н	н	L	L	L	L	н	н		
L	н	L	ι	L	L	н	н	н	н	L	L	L	L	L		
		,								Sa	me fu	uncti	on a	fŨ		
(L	L	х	×	х	X	La	tche	d wh	en	по	des a	s on	15t			
	i					G	goes	low		51	ines					
н	L	х	х	Х	Х					L	L	L	L	н		
н	н	f	nternal Q levels are same unction of D inputs as on rst 5 lines							L	L	L	L	н		

H = high level, L = low level, X = irrelevant

logic diagram (positive logic)

PRODUCTION DATA documents contain information current as of publication data. Products conform to specifications por the terms of Taxas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.

POST OFFICE BOX 655012 + DALLAS, TEXAS 7 J265

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, VCC (see Note 1)																		
Input voltage	•		-		-					-	-			-	-	-	. 5.5	V
Interemitter voltage (see Note 2)																		
Operating free-air temperature range: SN54278 Circuits																		
SN74278 Circuits															C)°C	to 70'	°C
Storage temperature range	•	•	-	•	-	•	•	,	•	•	-	•			65°	C t	o 150'	°C

NOTES: 1. Voltage values, except interemitter voltage, are with respect to network ground terminal.

2. This is the voltage between two emitters of a multiple-emitter transistor. For this circuit, this rating applies between the strobe input and any of the four data inputs.

recommended operating conditions

	5	SN54278					
	MIN	NOM	MAX	MIN	NOM	MAX	UNIT V μA
Supply voltage, VCC	4.5	5	5.5	4.75	5	5.25	V
High-level output current, IOH			-800			-800	μA
Low-level output current, IOL			16			16	mA
Data setup time, t _{su} (see Figure 1)	20	_		20			ns
Data hold time, (h (see Figure 1)	5			5			ns
Strobe pulse width, tw (see Figure 1)	20			20		-	ns
Operating free-air temperature, TA	-55		125	0		70	°C

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

	PARAMETER	۹	TEST CO	ONDITIONS	MIN	TYP	мах	UNIT
VIH	High-level input voltage				2	-		V
VIL	Low-level input voltage				1		0,8	V
Vik	Input clamp voltage		VCC = MIN,	II = -12 mA			-1.5	V
VOH	High-level output voltage	***** <u>*</u>	V _{CC} = MIN, V _{IL} ≈ 0.8 V,	V _{IH} = 2 V, I _{OH} =800 µA	2.4	·3.4		v
VOL	Low-level output voltage		V _{CC} = MIN, V _{IL} = 0.8 V,	V _{IH} = 2 V, I _{OL} = 16 mA		0.2	0.4	v
1	Input current at maximum input volt	age	VCC = MAX,	V _I = 5.6 V	1 -		1	mΑ
	High-level input current	Any D input					80	
Чн		P0 input	V _{CC} = MAX,	V ₁ - 2.4 V			200	μA
		G input					320	
	······································	Any D input					-3.2	
hL.	Low-level input current	PO input	V _{CC} = MAX,	V ₁ = 0.4 V			8	mA
		Ginput					-12.8	
	Chart aire it success and a			SN64278	-18		-55	mA
los	Short-circuit output current§		V _{CC} = MAX	SN74278	18		-57	
Icc	Supply current		VCC = MAX,	See Note 3		55	80	mA

[†] For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable type.

‡ All typical values are at V_{CC} = 5 V, $T_A \approx 25^{\circ}$ C.

§Not more than one output should be shorted at a time.

NOTE 3: 1CC is measured with the PO input grounded, all other inputs at 4.5 V, and outputs open.

switching characteristics, VCC = 5 V, TA = 25°C

PARAMETER [†]	FROM (INPUT)	TO (OUTPUT)	WAVEFORMS	TEST CONDITIONS	ΜΙΝ ΤΥΡ	MAX	UNIT
^t PLH	Data	Y	A and C			30	ns
TPHL	Data		(with strobe high)			39	
^t PLH	D	Y	A and D	Ci - 15 of		38	ns
tphl.	Data		(with strobe high)			31	
tPLH	Data	P1	A and E			46	ns
1PHL	Data	F 1	(with strobe high)	C L ≂ 15 ρF, R L = 400 Ω,		39	
^t PLH	Strobe	Any Y	B and C	See Figure 1	1	30	ns
tPHL .	Strope	Any	or B and D	Jeenguici		31]
^t PLH	Strobe	P1	B and E			38	ns
teht	311006					42	1 ```
tPLH	Pû	P1	F and G			23	ns
трнс	FU					30] '''

[†]tp_{LH} = propagation delay time, low-to-high-level output

tpHL = propagation delay time, high-to-low-level output

schematics of inputs and outputs

logic symbol[†]

 † This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

TEXAS

NOTE: Input pulses are supplied by a generator having the following characteristics: $t_r \leq 7$ ns, $t_f \leq 7$ ns, PRH \leq MHz, $Z_{out} \approx 50\Omega$.

FIGURE 1-SWITCHING TIMES

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any semiconductor product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

TI warrants performance of its semiconductor products and related software to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

Certain applications using semiconductor products may involve potential risks of death, personal injury, or severe property or environmental damage ("Critical Applications").

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS.

Inclusion of TI products in such applications is understood to be fully at the risk of the customer. Use of TI products in such applications requires the written approval of an appropriate TI officer. Questions concerning potential risk applications should be directed to TI through a local SC sales office.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards should be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or services described herein. Nor does TI warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used.

Copyright © 1996, Texas Instruments Incorporated