SN54174, SN54175, SN54LS174, SN54LS175, SN54S174, SN54S175, SN74174, SN74175, SN74LS174, SN74LS175, SN74S174, SN74S175 HEX/QUADRUPLE D-TYPE FLIP-FLOPS WITH CLEAR

SDLS068

DECEMBER 1972-REVISED MARCH 1988

'174, 'LS174, 'S174... HEX D-TYPE FLIP-FLOPS '175, 'LS175, 'S175... QUADRUPLE D-TYPE FLIP-FLOPS

- '174, 'LS174, 'S174 Contain Six Flip-Flops with Single-Rail Outputs
- SN54174, SN54LS174, SN54S174..., J OR W PACKAGE SN74174... N PACKAGE

'175, 'LS175, 'S175 Contain Four Flip-Flops with Double-Rail Outputs

- Three Performance Ranges Offered: See Table Lower Right
- Buffered Clock and Direct Clear Inputs
- Individual Data Input to Each Flip-Flop
- Applications include: Buffer/Storage Registers Shift Registers Pattern Generators

description

These monolithic, positive-edge-triggered flip-flops utilize TTL circuitry to implement D-type flip-flop logic. All have a direct clear input, and the '175, 'LS175, and 'S175 feature complementary outputs from each flip-flop:

Information at the D inputs meeting the setup time requirements is transferred to the Q outputs on the positive-going edge of the clock pulse. Clock triggering occurs at a particular voltage level and is not directly related to the transition time of the positive-going pulse. When the clock input is at either the high or low level, the D input signal has no effect at the output.

These circuits are fully compatible for use with most TTL circuits.

	EUNCTIO												
I	INPUTS OUTPUTS												
CLEAR	CLOCK	0	9	ā†									
L	х	x	L	н									
н	1	н	н	L									
н	t	L	L	н									
н	L	х	ao	ã _o									

H = high level (steady state)

- L = low level (steady state)
- X = irrelevant

 \uparrow = transition from low to high level Ω_0 = the level of Ω before the indicated steady-state

input conditions were established.

[†] = '175, 'LS175, and 'S175 only

TYPES	TYPICAL MAXIMUM CLOCK FREQUENCY	TYPICAL POWER DISSIPATION PER FLIP-FLOP
'174, '175	35 MHz	38 mW
'LS174, 'LS175	40 MHz	14 mW
'S174. 'S175	110 MHz	75 mW

PRODUCT PREVIEW documents contain information on products in the formative or design phase of development. Characteristic data and other specifications are design goals. Texas Instruments reserves the right to change or discontinue these products without notice.

POST OFFICE BOX 655012 • DALLAS, TEXAS 75265

SN74LS174, SN74S1	74 D OR N PACKAGE
(ТО	P VIEW)
10 🖸 2	15 🛛 60
³ [] at	14 🗋 6D
2D 🗍 4	13 🛛 5D
20 🗍 5	12 🗍 50
3D []6	11 🗍 40
30 🛛 7	10 40
	9 🛛 СLК

SN54LS174, SN54S174 . . . FK PACKAGE

SN54175, SN54LS175, SN54S175...J OR W PACKAGE SN74175...N PACKAGE SN74LS175, SN74S175...D OR N PACKAGE

(10	P VIEW)
10 🖸 2	15 40
1003	14 🛛 40
10 🛛 4	13 🛛 4D
2D 🛛 5	12 🛛 3 D
2₫∐6	יז 🛛 30
20∐"	10 🛛 30
GND []8	9Д с∟к

SN54LS175, SN54S175 ... FK PACKAGE

SN54174, SN54175, SN54LS174, SN54LS175, SN54S174, SN54S175, SN74174, SN74175, SN74LS174, SN74LS175, SN74S174, SN74S175 HEX/QUADRUPLE D-TYPE FLIP FLOPS WITH CLEAR

logic symbols[†]

[†]These symbols are in accordance with ANSI/IEEE Std. 91-1984 and IEC Publication 617-12. Pin numbers shown are for D, J, N, and W packages.

logic diagrams (positive logic)

4**0**

Pin numbers shown are for D, J, N, and W packages.

SN54174, SN54175, SN54LS174, SN54LS175, SN54S174, SN54S175, SN74174, SN74175, SN74LS174, SN74LS175, SN74S174, SN74S175 HEX/QUADRUPLE D-TYPE FLIP-FLOPS WITH CLEAR

schematics of inputs and outputs

SN54174, SN54175, SN74174, SN74175

SN54174, SN54175, SN74174, SN74175 Hex/Quadruple d-type flip-flops with clear

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, VCC (see Note 1)				-	 -	-		-	
Input voltage									
Operating free-air temperature range:	SN54174, SN54175 Circuits	•							–55°C to 125°C
	SN74174, SN74175 Circuits								$\cdot \cdot 0^{\circ}$ C to 70°C
Storage temperature range									–65°C to 150°C
NOTE 1: Voltage values are with respect to netw	ork ground terminal.								

recommended operating conditions

		SN54	174, SN	54175	X MIN NOM 5 4.75 5 5 0 - 5 0 - 5 0 - 20 - - 25 - 5	174, SN	74175	
		MIN 4.5 0 20 20 25 5	NOM	MAX	MIN	NOM	MAX	UNIT
Supply voltage, VCC	·	4.5	5	5.5	4.75	5	5.25	v
High-level output current, IOH	•			-800			-800	μA
Low-level output current, IOL	· · · · · · · · · · · · · · · · · · ·	1		16			16	mA
Clock trequency, fclock		0		25	0		25	MHz
Width of clock or clear pulse, tw	····	20			20			កទ
	Data input	20			20			nş
Setup time, t _{SU}	Clear inactive-state	25			25			ns
Data hold time, t _h		5			5			ns
Operating free-air temperature, TA	· · · ·	-55		125	0		70	°C

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

	PARAMETER	TEST CONDITIO	vs†	MIN	TYP‡	MAX	UNIT
⊻н	High-level input voltage			2			v
VIL	Low-level input voltage					0.8	V
Vik	Input clamp voltage	$V_{CC} = MIN, I_1 = -12 r$	nA			-1.5	V
V _{OH}	High-level output voltage	V _{CC} = MIN, V _{IH} = 2 V V _{IL} = 0.8 V, I _{OH} = -8		2.4	3.4		v
VOL	Low-level output voltage	V _{CC} ~ MIN, V _{1H} ~ 2 V V _{IL} = 0.8 V, I _{OL} = 16			0.2	0.4	v
4	Input current at maximum input voltage	V _{CC} = MAX, V ₁ = 5.5 V	,			1	mA
ЧΗ	High-level input current	V _{CC} = MAX, V _I = 2.4 V	,			40	μΑ
ЦL	Low-level input current	V _{CC} = MAX, V _I = 0.4 V	·			-1.6	mA
1	Short-circuit output current§		SN54'	20		-57	
los	anon-circuit output currents	V _{CC} = MAX	SN74'	-18		-57	mA
		Vcc = MAX, See Note 2	, 174		45	65	0
'cc	Supply current	V _{CC} = MAX, See Note 2	175		30	45	mΑ

[†] For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable device type.

 \ddagger All typical values are at V_{CC} = 5 V, T_A = 25^oC.

\$ Not more than one output should be shorted at a time.

NOTE 2: With all outputs open and 4.5 V applied to all data and clear inputs, I_{CC} is measured after a momentary ground, then 4.5 V, is applied to clock.

switching characteristics, VCC = 5 V, TA = 25° C

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
fmax	Maximum clock frequency		25		MHz	
	Propagation delay time, low-to-high-level output from clear					
tPLH	(SN54175, SN74175 only)	C _L = 15 pF,		16	25	ns
^t PHL	Propagation delay time, high-to-low-level output from clear	$\frac{R_{L}}{See Note 3}$		23	35	пŝ
^t PLH	Propagation delay time, low-to-high-level output from clock	See Note S		20	30	пs
^t PHL	Propagation delay time, high-to-low-level output from clock			24	35	ns

NOTE 3: Load circuits and voltage waveforms are shown in Section 1.

SN54LS174, SN54LS175, SN74LS174, SN74LS175 HEX/QUADRUPLE D-TYPE FLIP-FLOPS WITH CLEAR

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, V_{CC} (see Note 1) .																			
Input voltage																			7 V
Operating free-air temperature range:	SN5	4LS	174,	, SN	1541	S 1	75	Çird	uit	s	-					-5	i5°C	to:	125°C
	SN7	4LS	174	, SN	1741	_S1	75	Ciri	cuit	s		. '	-				0°	C to	⊳ 70°C
Storage temperature range		•	• •					, .	•							-6	i5°C	to C	150°C

NOTE 1: Voltage values are with respect to network ground terminal.

recommended operating conditions

		SM	454LS1	74	SM	v74LS1	74	
		S	N54LS1	75	S	N74LS1	75	UNIT
		MIN	NOM	MAX	MIN	NOM	MAX	
Supply voltage, V _{CC}		4.5	5	5.5	4.75	5	5.25	V
High-level output current, IOH				-400			-400	μA
Low-level output current, IOL				4			8	mА
Clock frequency, fclock		0		30	0		30	MHz
Width of clock or clear pulse, tw		20			20			ns
Coture aligne a	Data input	20			20			ns
Setup time, t _{su}	Clear inactive-state	25			25			ns
Data hold time, th		5			5			ns
Operating free-air temperature, TA		-55		125	Û		70	

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

	PARAMETER	TES	T CONDITION	st.		N54LS' N54LS'			SN74LS SN74LS		UNIT
					MIN	TYP‡	MAX	MIN	TYP‡	MAX	
VIH	High-level input voltage				2			2			V
VIL	Low-level input voltage						0.7			0.8	V
٧ıĸ	Input clamp voltage	V _{CC} = MIN,	lj = −18 mA				-1.5			-1.5	V
Voн	High-level output voltage	V _{CC} = MIN, V _{IL} = V _{IL} max,		A	2,5	3.5	-	2.7	3.5		v
		V _{CC} = MIN,	V _{IH} = 2 V,	IOL = 4 mA	1	0.25	0.4		0.25	0.4	
VoL	Low-level output voltage	Vil = Vil max		IOL = 8 mA					0.35	0.5	v
lų –	Input current at maximum input voltage	V _{CC} = MAX,	V _I = 7 V				0.1			0.1	mA
ЧH	High-level input current	VCC = MAX,	VI = 2.7 V				20			20	μA
ηL	Low-level input current	V _{CC} = MAX,	VI = 0.4 V				-0.4			-0.4	mΑ
los	Short-circuit output current \$	V _{CC} = MAX			-20		-100	-20		-100	mΑ
				'LS174		16	26		16	26	
10C	Supply current	V _{CC} = MAX,	See Note 2	'L\$175		11	18		11	18	mΑ

[†]For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

 $\frac{3}{4}$ All typical values are at V_{CC} - 5 V, T_A = 25 C.

 $rac{8}{3}$ Not more then one output should be shorted at a time, and duration of the short-circuit should not exceed one second.

NOTE 2: With all outputs open and 4.5 V applied to all data and clear inputs, I_{CC} is measured after a momentary ground, then 4.5 V, is applied to clock.

switching characteristics, V_{CC} = 5 V, T_A = 25°C

PARAMETER	TEST CONDITIONS		'LS174			'LS175		
	TEST CONDITIONS	MIN	түр	MAX	MIN	TYP	MA X 30 30 25 25	UNIT
f _{max} Maximum clock frequency		30	40		30	40		MHz
1PLH Propagation delay time, low-to-high-level output from clear	C _L =15pF					20	30	ns
tphi Propagation delay time, high-to-low-level output from clear	$R_L = 2 k\Omega$,		23	35		20	30	ns
tPLH Propagation delay time, low-to-high-level output from clock	See Note 3		20	30		13	25	ns
tphL Propagation delay time, high-to-low-level output from clock			21	30		16	25	ПS

NOTE 3: Load circuits and voltage waveforms are shown in Section 1.

SN54S174, SN54S175, SN74S174, SN74S175 HEX/QUADRUPLE D.TYPE FLIP.FLOPS WITH CLEAR

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, VCC (see Not	te 1) .									-									7 V
Input voltage							-				-			,					5.5 V
Operating free-air temperature	e range:	SN545	174,	SN	54S1	75	Circ	uits	i								-55°C	to	125°C
																			70°C
Storage temperature range		• • •	•						-			 •			•		-65°C	to	150°C

NOTE 1: Voltage values are with respect to network ground terminal.

recommended operating conditions

		SN54S	174, SN	SN74S				
		MIN	NOM	MAX	MIN	NOM	MAX	
Supply voltage, VCC		4.5	5	5.5	4.75	5	5.25	V
High-level output current, IOH				-1			1	mΑ
Low-level output current, IOL	· · · · · · · · · · · · · · · · · · ·	-		20	1		20	mA
Clock frequency, fclock		0		75	0		75	MHz
B to a state a	Clock	7			7			
Clock frequency, f _{Clock}	Clear	10	~		10			115
	Data input	5			5			
Setup time, t _{su}	Clear inactive-state	5		5.5 4.75 5 5.25 V -1 -1 m/ 20 20 m/ 75 0 75 Mi 7 10 ms ms 5 5 ns ns 3 ns ns	1 ns			
Data hold time, t _h		3			3			ns
Operating free-air temperature, TA		-55		125	0		70	°C

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

	PARAMETER	TEST CONDITIONS [†]		MIN	TYP‡	ΜΑΧ	UNIT
VIH	High-level input voltage	· · · ·		2			V
VIL	Low-level input voltage					0.8	V
¥ік	Input clamp voltage	$V_{CC} = M N, I_I = -18 mA$		1		-1.2	V
V _{OH} High-level output voltage	V _{CC} = MIN, V _{1H} = 2 V,	SN545'	2.5	3.4			
	High-level output voltage	V _{IL} = 0.8 V, I _{OH} =1 mA	SN745'	2.7	3.4		V
VOL	Low-level output voltage	$V_{CC} = MIN, V_{IH} = 2V,$				0.5	v
		VIL = 0.8 V, IOL = 20 mA		1		Ų.9	v
η.	Input current at maximum input voltage	V _{CC} = MAX, V ₁ = 5.5 V				1	mΑ
ΫН	High-level input current	V _{CC} = MAX, V ₁ = 2.7 V				50	μA
ΊL	Low-level input current	V _{CC} = MAX, V ₁ = 0.5 V				-2	mA
los	Short-circuit output current §	V _{CC} - MAX		-40		-100	mA
		(17			90	144	
ICC 8	Supply current	V _{CC} = MAX, See Note 2	175		60	96	mA

[†]For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable device type.

⁺All typical values are at V_{CC} = 5 V, T_A = 25°C. [§]Not more than one output should be shorted at a time, and duration of the short-circuit should not exceed one second.

NOTE 2: With all outputs open and 4.5 V applied to all data and clear inputs, ICC is measured after a momentary ground, then 4.5 V, is applied to clock.

switching characteristics, V_{CC} = 5 V, TA = 25°C

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
fmax	Maximum clock frequency		75	110		MHz
t₽LH	Propagation delay time, low-to-high-level Q output from clear (SN54S175, SN74S175 only)	CL = 15 pF,		10	15	រាទ
трне	Propagation delay time, high-to-low-level Q output from clear	R _L = 280 Ω, See Note 3		13	22	ns
^t PLH	Propagation delay time, low-to-high-level output from clock	See Note 5		8	12	ns
1PHL	Propagation time, high-to-low-level output from clock			11.5	17	

NOTE 3: Load circuits and voltage waveforms are shown in Section 1.

POST OFFICE BOX 655012 - DALLAS, TEXAS 75265

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any semiconductor product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

TI warrants performance of its semiconductor products and related software to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

Certain applications using semiconductor products may involve potential risks of death, personal injury, or severe property or environmental damage ("Critical Applications").

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS.

Inclusion of TI products in such applications is understood to be fully at the risk of the customer. Use of TI products in such applications requires the written approval of an appropriate TI officer. Questions concerning potential risk applications should be directed to TI through a local SC sales office.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards should be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or services described herein. Nor does TI warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used.

Copyright © 1996, Texas Instruments Incorporated