SDLS066

- Independent Read/Write Addressing Permits Simultaneous Reading and Writing
- Organized as Eight Words of Two Bits Each
- Fast Access Times: From Read Enable . . . 15 ns Typical From Read Select . . . 33 ns Typical
- 3-State Outputs Simplify Use in _ Bus-Organized Systems
- Applications: Stacked Data Registers Scratch-Pad Memory Buffer Storage Between Processors Fast Multiplication Schemes

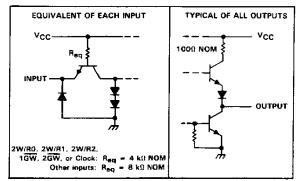
description

The SN74172, containing the equivalent of 201 gates on a monolithic chip, is a high-performance 16-bit register file organized as eight words of two bits each.

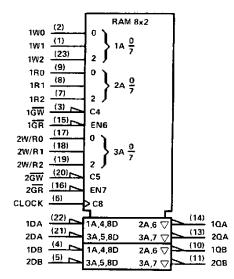
Multiple address decoding circuitry is used so that the read and write operation can be performed independently on two word locations. This provides a true simultaneous read/write capability. Basically, the file consists of two distenct sections (see Figure 1).

Section 1 permits the writing of data into any two-bit word location while reading two bits of data from another location simultaneously. To provide this flexibility, independent decoding is incorporated.

Section 2 of the register file is similar to section 1 with the exception that common read/write address circuitry is employed. This means that section 2 can be utilized in one of three modes:


- 1) Writing new data into two bits
- 2) Reading from two bits
- 3) Writing into and simultaneously reading from the same two bits.

Regardless of the mode, the operation of section 2 is entirely independent of section 1.


SN741		N P P VIEW	ACKAGE /)
1W1	1	U 24	Dvcc
1W0	2	23	1W2
1GW	3	22	1DA
1DB	4	21	2DA
2DB	5	20	2GW
CLK (6	19	2W/R2
1R2 (7	18	2W/R1
1R1 [8	17	2W/R0
1R0 [_ 9	16	2 GR
10 ₈ []10	15] 1GR
20 _B [11	14]10A
GND [12	13	20 _A

MAY 1972-REVISED MARCH 1988

schematics of inputs and outputs

logic symbol[†]

[†]This symbol is in accordance with ANSI/IEEE Std. 91-1984 and IEC Publication 617-12.

PRODUCTION DATA documents contain information current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.

description (continued)

The three-state outputs of this register file permit connection of up to 129 compatible outputs and one Series 54/74 high-logic-level load to a common system bus. The outputs are controlled by the read-enable circuitry so that they operate as standard TTL totem-pole outputs when the appropriate read-enable input is low or they are placed in a high-impedance state when the associated read-enable input is at a high logic level. To minimize the possibility that two outputs from separate register files will attempt to take a common bus to opposite logic levels, the read-enable circuitry is designed such that disable times are shorter than enable times.

All inputs are buffered to lower the drive requirements of the clock, read/write address, and write-enable inputs to one normalized Series 54/74 load, and of all other inputs to one-half of one normalized Series 54/74 load.

FUNCTION	SECTION 1	SECTION 2	DESCRIPTION							
Write Address	1w0, 1w1, 1w2	2W/R0, 2W/R1, 2W/R2	Binary write address selects one of eight two-bit word locations.							
Write Enable	1 GW	2 GW	When low, permits the writing of new data into the selected word location on a positive transition of the clock input.							
Data Inputs	Data Inputs 1DA, 1DB		Data at these inputs is entered on a positive transition of the clock input into the location selected by the write address inputs if the write enable input is low. Since the two sections are independent, it is possible for both write function to be activated with both write addresses selecting the same word location. If this occurs and the information at the data inputs is not the same for both sections (i.e., $1DA \neq 2DA$ and/or $1DB \neq 2DB$) the low-level data will predominate in each bit and be stored.							
Read Address	1R0, 1R1, 1R2	Common with write address	Binary write address selects one of eight two-bit word locations.							
Read Enable	1GR	2GR	When read enable is low, the outputs assume the levels of the data stored in the location selected by read address inputs. When read enable is high, the							
Data Outputs	1Q _A , 1Q _B	20 _A , 20 _B	associated outputs remain in the high-impedance state and neither significantly load nor drive the lines to which they are connected.							
Clock		СК	The positive-going transition of the clock input will enter new data into the addressed location if the write enable input is low. The clock is common to both sections.							

Functions of the inputs and outputs of the SN74172 are as shown in the following table.



FIGURE 1

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage (see Note 1)											-							7 ۱	1
Input voltage													-					5.5 \	1
Output voltage (see Note 2)																			
Operating free-air temperature range																			
Storage temperature	-			·				-							-6	5°C	to :	150°(2

NOTES: 1. Voltage values are with respect to network ground terminal.

2. This is the maximum voltage which should be applied to any output when it is in the high-impedance state.

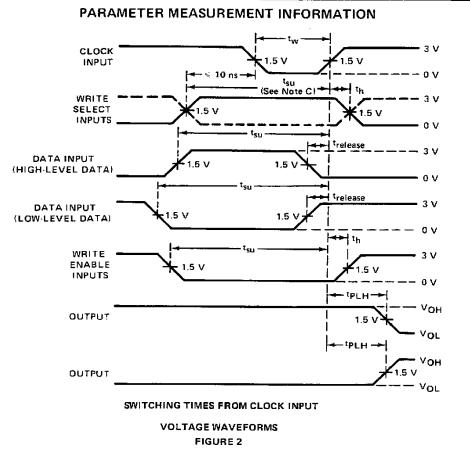
recommended operating conditions

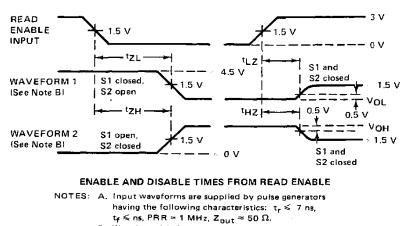
		MIN	NOM	MAX	UNIT
Supply voltage, V _{CC}		4.75	5	5.25	V
High-level output current, IOH		1		-5.2	mA
Low-level output current, IOL				16	mA
Clock frequency, f _{clock}	· · · · · · · · · · · · · · · · · · ·	0		20	MHz
Width of clock pulse, tw(clock)		25			ns
Low-level output current, IOL Clock frequency, f _{clock}	Write select	tw(clock)+10)		
	High-level data	30			Ī
	Low-level data	45		_	ns
	Write enable	35			
	Write select	0			
Hota time, th(see Figure 1)	Write enable	0			ns
	High-level data	0			
Data release time, trelease (see Figure 1)	Low-level data	0			ns
Operating free-air temperature, T _A		0		70	°C

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

	PARAMETER	R	TEST	CONDITIONS	MIN	TYP‡	MAX	UNIT
⊻ін	High-level input voltage		1		2			V
VIL	Low-level input voltage						0.8	v
VIK	Input clamp voltage		VCC = MIN,	l _I = −12 mA	1		-1.5	V
VOH	High-level output voltage		V _{CC} ≠ MIN, V _{IL} = 0.8 V,	V _{IH} = 2 V, I _{OH} = -5.2 mA	2.4	3		v
VOL	Low-level output voltage	- <u> </u>	V _{CC} = MIN, V _{IL} = 0.8 V,	V _{IH} = 2 V, IOL = 16 mA		0.2	0.4	v
lO(off)	Off-state (high-impedance state) o	output current	VCC = MAX. VCC = MAX,				40	μA
1	Input current at maximum input	voltage	V _{CC} = MAX,	· · · · · · · · · · · · · · · · · · ·	┼──		1	mA
Чн	High-level input current		VCC = MAX,	V ₁ = 2.4 V			40	μA
н.	Low-level input current	2W/R0, 2W/R1, 2W/R2, 1GW, 2GW, or clock	Vcc = MAX,	VI = 0.4 V		40 -40 1 40 -1.6 -0.8	mA	
		Any other input		·			-0.8	
los	Short-circuit output current \$		V _{CC} = MAX		-18		-55	mA
lcc	Supply current		VCC = MAX, Outputs open	All inputs at 4.5 V,		112	170	mΑ

 † For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.


‡All typical values are at V_{CC} = 5 V, T_A = 25° C.


\$Not more than one output should be shorted at a time.

switching characteristics, V_{CC} = 5 V, T_A = 25°C, R_L = 400 Ω

	PARAMETER	TEST CONDITIONS	MIN	түр	MAX	UNIT
f _{max}	Maximum clock frequency		20			MHz
^t PLH	Propagation delay time, low-to-high-level cutput from read select			33	45	
^t PHL	Propagation delay time, high-to-low-level output from read select		·	30	45	ns
^t PLH	Propagation delay time, low-to-high-level output from clock	C _L = 50 pF,		35	50	·
tp H L	Propagation delay time, high-to-low-level output from clock	See Figure 2		35	50	ns
^t PZH	Output enable time to high level			14	30	
^t PZL	Output enable time to low level			16	30	ns
tPHZ	Output disable time from high level	CL = 5 ρF,		6	20	
TPLZ	Output disable time from low level	See Figure 2		11	20	nş

PARAMETER MEASUREMENT INFORMATION

tr ≤ ns, PRR ≈ 1 MHz, Z_{DUt} ≈ 50 Ω.
B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled.
Waveform 2 is for an output with internal conditions such that the output is high except when disabled.

- C. Write select setup time, as specified, will protect data
 - written into previous address. D. Load circuit is shown on page

VOLTAGE WAVEFORMS FIGURE 2 (continued)

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any semiconductor product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

TI warrants performance of its semiconductor products and related software to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

Certain applications using semiconductor products may involve potential risks of death, personal injury, or severe property or environmental damage ("Critical Applications").

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS.

Inclusion of TI products in such applications is understood to be fully at the risk of the customer. Use of TI products in such applications requires the written approval of an appropriate TI officer. Questions concerning potential risk applications should be directed to TI through a local SC sales office.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards should be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or services described herein. Nor does TI warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used.

Copyright © 1996, Texas Instruments Incorporated