SN54166, SN54LS166A, SN74166, SN74LS166A PARALLEL-LOAD 8-BIT SHIFT REGISTERS

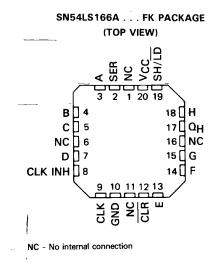
OCTOBER 1976 - REVISED MARCH 1988

- Synchronous Load
- Direct Overriding Clear
- Parallel to Serial Conversion

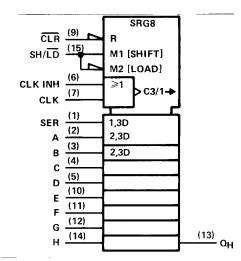
ТҮРЕ	TYPICAL MAXIMUM CLOCK FREQUENCY	TYPICAL POWER DISSIPATION
'166	35 MHz	360 mW
'I S166A	35 MHz	100 mW

description

The '166 and 'LS166A 8-bit shift registers are compatible with most other TTL logic families. All '166 and 'LS166A inputs are buffered to lower the drive requirements to one Series 54/74 or Series 54LS/74LS standard load, respectively. Input clamping diodes minimize switching transients and simplify system design.


These parallel-in or serial-in, serial-out shift registers have a complexity of 77 equivalent gates on a monolithic chip. They feature gated clock inputs and an overriding clear input. The parallel-in or serial-in modes are established by the shift/load input. When high, this input enables the serial data input and couples the eight flip-flops for serial shifting with each clock pulse. When low, the parallel (broadside) data inputs are enabled and synchronous loading occurs on the next clock pulse. During parallel loading, serial data flow is inhibited. Clocking is accomplished on the low-to-high-level edge of the clock pulse through a two-input positive NOR gate permitting one input to be used as a clock-enable or clock-inhibit function. Holding either of the clock inputs high inhibits clocking; holding either low enables the other clock input. This, of course, allows the system clock to be free-running and the register can be stopped on command with the other clock input. The clock inhibit input should be changed to the high level only while the clock input is high. A buffered, direct clear input overrides all other inputs, including the clock, and sets all flip-flops to zero.

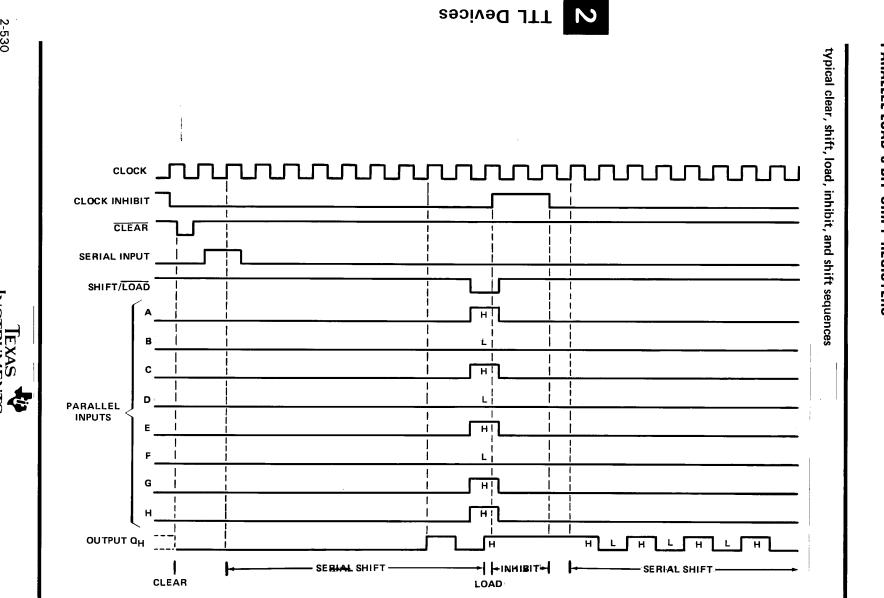
FUNCTION TA	٩в	LE
-------------	----	----


· · · ·		IN	PUTS			INTE	RNAL	OUTPUT
CLEAR	SHIFT/	CLOCK	CL OCK	CEDIAL	PARALLEL	ουτι	PUTS	OUTPUT
LLEAR	LOAD	INHIBIT	LUCK	SERIAL PARALLEL OUTPUTS AH QA QB X X L L X X QA0 QB0 X ah a b H X H QAn L X L QA0	ΦH			
L	x	x	х	х	×	L	L	L
н	x	L	L	x	x	Q _{A0}	Q _{B0}	QHO
н	L	Ł	t	×	ah	а	b	h
н	н	L	t	н	x	н	۵ _{An}	QGn
н	н	L	t	L	x	L	QAn	QGn
н	x	н	Ť	x	х	Q _{A0}	0 ₈₀	QH0

SN54166, SN54LS166A J OR W PACKAGE
SN74166 N PACKAGE
SN74LS166A D OR N PACKAGE
(TOP VIEW)

1	U_{16}	
2	15	SH/LD
3	14	Дн
4	13	Dон
5	12	G
6	11	□ F
7	10	E
8	9	
	3 4 5 6 7	2 15 3 14 4 13 5 12 6 11 7 10

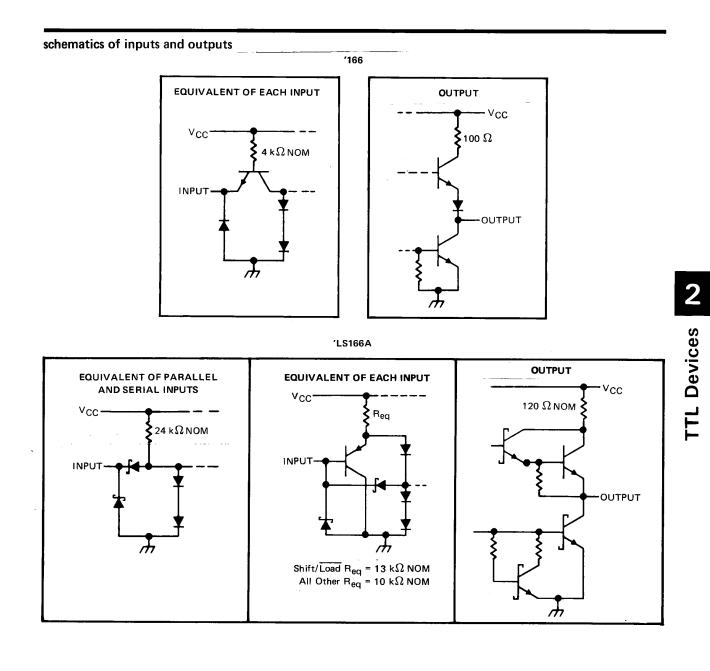
logic symbol[†]



[†]This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

Pin numbers shown are for D, J, N, and W packages.

PRODUCTION DATA documents contain information current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.

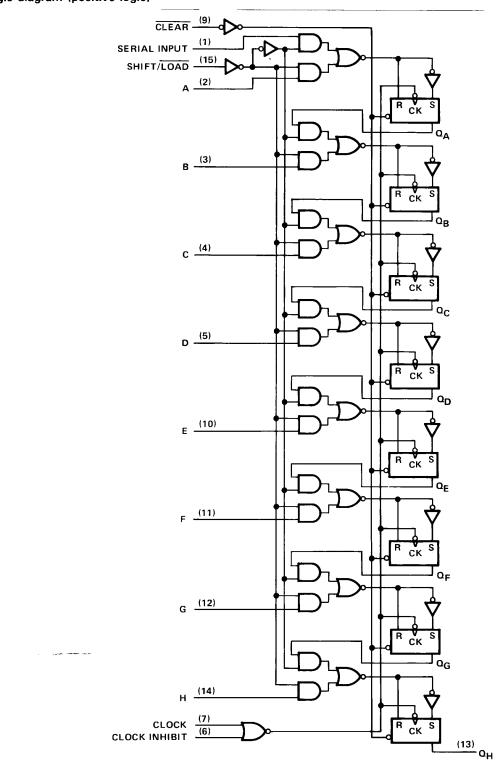


SN54166, SN54LS166A, SN74166, SN74LS166A Parallel-Load 8-bit Shift Registers

POST OFFICE BOX 655012 . DALLAS, TEXAS 75265 TEXAS V INSTRUMENTS

2-530

SN54166, SN54LS166A, SN74166, SN74LS166A PARALLEL-LOAD 8-BIT SHIFT REGISTERS



and an and an and

SN54166, SN54LS166A, SN74166, SN74LS166A PARALLEL-LOAD 8-BIT SHIFT REGISTERS

logic diagram (positive logic)

Pin numbers shown are for D, J, N, and W packages.

SN54166, SN74166 PARALLEL·LOAD 8-BIT SHIFT REGISTERS

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, VCC (see Note 1) .						 		•								7 V
Input voltage						 • •										5.5 V
Operating free-air temperature range:	SN54166 SN74166	(see N	lote 2)										-59	5°C	to	125°C
Storage temperature range			· · ·	•••	•	 •	•				•	•	-6!	5°C	to	150°C
recommended operating conditions																

		SN5416					
	MIN	NOM	MAX	MIN	NOM	MAX	TINU
Supply voltage, V _{CC}	4.5	5	5.5	4.75	5	5.25	V
High-level output current, IOH			-800			-800	μA
Low-level output current, IOL			16			16	mA
Clock frequency, fclock	0		25	0		25	MHz
Width of clock or clear pulse, tw (see Figure 1)	20			20			ns
Mode-control setup time, t _{su}	30			30			ns
Data setup time, t _{su} (see Figure 1)	20			20			ns
Hold time at any input, th (see Figure 1)	0			0			ns
Operating free-air temperature, TA (see Note 2)	55		125	0		70	°C

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

		TEST CONDITIONS [†]) s	SN5416	6	s	N7416	6	
	PARAMETER	TEST CONDITIONS	MIN	TYP‡	MAX	MIN	TYP‡	MAX	UNIT
VIH	High-level input voltage		2			2			V
VIL	Low-level input voltage				0.8			0.8	V
VIĶ	Input clamp voltage	$V_{CC} = MIN, I_I = -12 \text{ mA}$	1		-1.5			-1.5	V
VOH	High-level output voltage	$V_{CC} = MIN, V_{IH} = 2 V,$ $V_{IL} = 0.8 V, I_{OH} = -800 \mu A$	2.4	3.4		2.4	3.4		v
VOL	Low-level output voltage	$V_{CC} = MIN, V_{IH} = 2 V,$ $V_{IL} = 0.8 V, I_{OL} = 16 mA$		0.2	0.4		0.2	0.4	v
4	Input current at maximum input voltage	V _{CC} = MAX, V _I = 5.5 V			1			- 1	mA
Чн	High-level input current	V _{CC} = MAX, V _I = 2.4 V	1		40			40	μA
μL	Low-level input current	V _{CC} = MAX, V _I = 0.4 V			-1.6			-1.6	mA
los	Short-circuit output current§	V _{CC} = MAX	-20		-57	-18		-57	mA
ICC	Supply current	V _{CC} = MAX, See Note 3		90	127		90	127	mA

[†]For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

[‡]All typical values are at $V_{CC} = 5 V$, $T_A = 25^{\circ}C$.

\$Not more than one output should be shorted at a time.

NOTES: 1. Voltage values are with respect to network ground terminal.

- 2. An SN54166 in the W package operating at free-air temperatures above 113° C⁻requires a heat-sink that provides a thermal resistance from case to free air, R_{0CA}, of not more than 48° C/W.
- 3. With all outputs open, 4.5 V applied to the serial input, all other inputs except the clock grounded, I_{CC} is measured after a momentary ground, then 4.5 V, is applied to the clock.

switching characteristics, $V_{CC} = 5 V$, $T_A = 25^{\circ}C$

	PARAMETER	TEST CONDITIONS		TYP	MAX	UNIT
max	Maximum clock frequency		25	35		MHz
PHL	Propagation delay time, high-to- low-level output from clear	C _L = 15 pF, R _L = 400 Ω, See Figure 1		23	35	ns
0	Propagation delay time, high-to- low-level output from clock			20	30	ns
PLH	Propagation delay time, low-to- high-level output from clock			17	26	ns

TTL Devices

2 - 533

SN54LS166A, SN74LS166A **PARALLEL·LOAD 8-BIT SHIFT REGISTERS**

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, VCC (see Note 1)	7V
Input voltage	7V
Operating free-air temperature range: SN54LS166A	
SN74LS166A	
Storage temperature range	5°C to 150°C

NOTE 1: Voltage values are with respect to network ground terminal.

recommended operating conditions

		SI	SN54LS166A			SN74LS166A		
		MIN	ТҮР	MAX	MIN	ТҮР	MAX	
V _{CC}	Supply voltage	4.5	5	5.5	4.75	5	5.25	V
VIH	High-level input voltage	2			2			V
VIL	Low-level input voltage			0.7			0.8	V
юн	High-level output current	· · · · · ·		- 0.4	-		- 0.4	mA
ΙΟL	Low-level output current			4			8	mA
fclock	Clock frequency	0		25	0		25	MHz
tw	Width of clear pulse (See Figure 1)	20			20			ns
tw	Width of clock pulse (See Figure 1)	25			25			1
t _{su}	Mode-control setup time	30			30			ns
t _{su}	Data setup time (See Figure 1)	20		1	20			ns
th	Hold time at any input (See Figure 1 and Note 4)	0			0			ns
TA	Operating free air temperature	- 55		125	0		70	°c

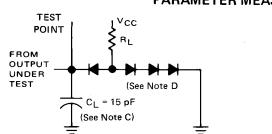
NOTE 4: The hold time limit of 0 ns applies only if the rise time is less than or equal to 10 ns.

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS [†]		SN	154LS1	56A	SN			
			MIN	TYP‡	MAX	MIN	түр‡	MAX	
VIK	V _{CC} = MIN, I _I = − 18 mA				- 1.5			- 1.5	V
∨он	$V_{CC} = MIN, V_{IH} = 2 V, V_I$ $I_{OH} = -0.4 \text{ mA}$	L = MAX,	2.5	3.4		2.7	3.4		V
- Vai	V _{CC} = MIN, V _{IH} = 2 V, I _O	L = 4 mA		0.25	0.4		0.25	0.4	
VOL	VIL = MAX	L≈8mA					0.35	0.5	- ×
4	V _{CC} = MAX, V _I = 7 V				0.1			0.1	mA
ЧН	V _{CC} = MAX, V _I = 2.7 V				20			20	μΑ
ΊL	V _{CC} = MAX, V _I = 0.4 V	<u> </u>			- 0.4			- 0.4	mA
IOSS	V _{CC} = MAX		- 20		- 100	- 20		- 100	mA
Icc	V _{CC} = MAX, See Note 5			20	32		20	32	mA

tFor conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions. 1 \pm All typical values are at V_{CC} = 5 V, T_A = 25°C.

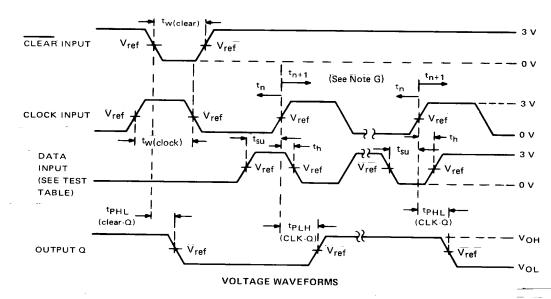
\$Not more than one output should be shorted at a time, and duration for short-circuit should not exceed one second.


NOTE 5: With all outputs open, 4.5 V applied to the serial input and all other inputs except the clock grounded, ICC is measured after a momentary ground, than 4.5 V, is applied to clock.

switching characteristics, $V_{CC} = 5 V$, $T_A = 25^{\circ}C$

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
f _{max} Maximum clock frequency		25	35		MHz
Propagation delay time, high-to-					
^t PHL low-level output from clear			19	30	ns
Propagation delay time, high-to-	$$ $C_L = 15 \text{pF}, R_L = 2 \text{k}\Omega,$	kS2, 7	14	25	ns
^t PHL low-level output from clock	See Figure 1				
Propagation delay time, low-to- ^t PLH high-level output from clock	······································				
		5	11	20	ns

Ŷ



LOAD FOR OUTPUT UNDER TEST

PARAMETER MEASUREMENT INFORMATION

TEST TABLE FOR SYNCHRONOUS INPUTS

DATA INPUT FOR TEST	SHIFT/LOAD	OUTPUT TESTED (SEE NOTE F)		
н	0 V	Q _H at t _{n+1}		
Serial Input	4.5 V	Q _H at t _{n+8}		

NOTE: A. All pulse generators have the following characteristics: $Z_{out} \approx 50\Omega$; for '166, $t_r \leq 7$ ns and $t_f \leq 7$ ns; for 'LS166A, $t_r \leq 15$ ns and $t_f \leq 6$ ns.

- B. The clock pulse has the following characteristics: $t_{w(clock)} \le 20$ ns and PRR = 1 MHz. The clear pulse has the following characteristics: $t_{w(clear)} \le 20$ ns and t_{hold} = 0 ns. When testing f_{max} , vary the clock PRR.
- C. CL includes probe and jig capacitance.
- D. All diodes are 1N3064, 1N916, or equivalent.
- E. A clear pulse is applied prior to each test.
- F. Propagation delay times (tPLH and tPHL) are measured at tn + 1. Proper shifting of data is verified at tn + 8 with a functional test.
- G. $t_n = bit$ time before clocking transition
 - t_{n+1} = bit time after one clocking transition
 - t_{n+8} = bit time after eight clocking transitions
- H. For '166 $V_{ref} = 1.5$ V; for 'LS166A $V_{ref} = 1.3$ V.

المربع المراجع المراجع

FIGURE 1

2

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any semiconductor product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

TI warrants performance of its semiconductor products and related software to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

Certain applications using semiconductor products may involve potential risks of death, personal injury, or severe property or environmental damage ("Critical Applications").

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS.

Inclusion of TI products in such applications is understood to be fully at the risk of the customer. Use of TI products in such applications requires the written approval of an appropriate TI officer. Questions concerning potential risk applications should be directed to TI through a local SC sales office.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards should be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or services described herein. Nor does TI warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used.

Copyright © 1996, Texas Instruments Incorporated