SN54147, SN54148, SN54LS147, SN54LS148, SN74147, SN74148 (TIM9907), SN74LS147, SN74LS148 10-LINE TO 4-LINE AND 8-LINE TO 3-LINE PRIORITY ENCODERS

SDLS053 OCTOBER 1976 - REVISED MARCH 1988

'147, 'LS147

- Encodes 10-Line Decimal to 4-Line BCD
- **Applications Include:**

Keyboard Encoding Range Selection: '148, 'LS148

- **Encodes 8 Data Lines to 3-Line Binary (Octal)**
- Applications Include:

N-Bit Encoding Code Converters and Generators

	TYPICAL	TYPICAL
TYPE	DATA	POWER
	DELAY	DISSIPATION
147	10 ns	225 mW
148	10 ns	190 mW
'LS147	15 ns	60 mW
1 5148	15 as	60 mW

description

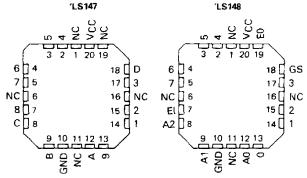
These TTL encoders feature priority decoding of the inputs to ensure that only the highest-order data line is encoded. The '147 and 'LS147 encode nine data lines to four-line (8-4-2-1) BCD. The implied decimal zero condition requires no input condition as zero is encoded when all nine data lines are at a high logic level. The '148 and 'LS148 encode eight data lines to three-line (4-2-1) binary (octal). Cascading circuitry (enable input El and enable output EO) has been provided to allow octal expansion without the need for external circuitry. For all types, data inputs and outputs are active at the low logic level. All inputs are buffered to represent one normalized Series 54/74 or 54LS/74LS load, respectively.

'147, 'L\$147 **FUNCTION TABLE**

			(P	NPUT	S					ουτι	PUTS	
1	2	3	4	5	6	7	8	9	D	C	В	A
н	Н	Н	н	Н	н	н	н	н	н	Н	Н	H
х	×	×	×	X	×	×	X	L] L	Н	н	L
X	×	×	×	×	×	X	Ł	н	L	н	н	H
X	х	Х	×	Х	х	L	н	Н	н	L	L	L
X	X	×	×	×	L	н	н	н	Н	L	L	Н
X	×	×	×	L	Н	н	н	н	н	L	н	L
х	X	×	L	Н	н	н	н	н	н	L	н	Н
X	×	L	н	Н	н	н	н	н	Н	н	L	L
X	L	H	н	н	н	н	н	н	н	н	L	н
L	н	Н	н	н	н	н	н	н	н	н	н	L

H = high logic level, L = low logic level, X = irrelevant

SN54147, SN54LS147,

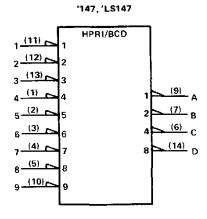

SN54148, SN54LS148 . . . J OR W PACKAGE SN74147, SN74148 . . . N PACKAGE SN74LS147, SN74LS148 . . . D OR N PACKAGE

(TOP VIEW)

'147, 'L	_S147	′148. ′	LS148
4 [[1]	716]] VCC	4 [1	716]] VCC
5 🗖 2	15 NC	5 🛛 2	15 🗍 E0
6 ∐3	14 🗍 D	6∐3	14 🗍 GS
7 🛮 4	13 🛚 3	7 🛮 4	13 🗍 3
8 🛮 5	12 2	£I ∏ 5	12 🔲 2
C [6	11 🔲 1	A2 []6	11 🔲 1
8 🗖 ⁊	10 🔲 9	A1 🔲 7	10 🔲 0
GND 🛮 8	9 🗖 A	GND ∏ 8	0A 🗌 e

SN54LS147, SN54LS148 . . . FK PACKAGE (TOP VIEW)

'LS148

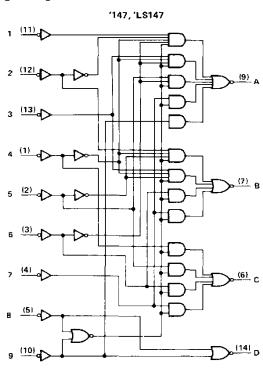

NC - No internal connection

'148, 'LS148 **FUNCTION TABLE**

			- 11	VPUT	S					ΟL	JTPU	TS	
EI	0	1	2	_3	4	5	6	7	A2	A1	AO	GS	EO
н	х	x	×	х	×	×	×	×	н	н	Н	н	Н
L	н	Н	н	н	Н	н	н	Н	н	н	H	н	Ł
L	х	×	х	Х	×	х	X	L.	L	L	L	L	н
L	×	×	×	×	×	×	L	н	L	L	Н	L	н
L	×	×	х	х	×	L	н	н	L	н	L	ì Ł	н
L	×	×	×	×	L	н	н	H	L	н	н	ι	н
Ļ	×	×	X	L	н	н	н	Н	н	Ł	L	L	н
L	×	×	Ĺ	Н	Н	Н	H	н	н	L	н	L	н
L	×	L	н	н	Н	н	н	н	н	Н	L	L	н
L	L	н	H	Н	н	н	н	н	н	н	н	L	н

SN54147, SN54148, SN54LS147, SN54LS148, SN74147, SN74148 (TIM9907), SN74LS147, SN74LS148 10-LINE TO 4-LINE AND 8-LINE TO 3-LINE PRIORITY ENCODERS

logic symbols†



 $^{^{\}dagger} These$ symbols are in accordance with-ANSI/IEEE Std. 91-1984 and IEC Publication 617-12.

Pin numbers shown are for D, J, N, and W packages.

'148, 'LS148 HPRI/BIN 0 (10) 10 1 (11) 1/Z11 11. (12)2/Z12 12-3 (13) (15) EO 3/Z13 13. (1) 4/Z14 (14) GS (2) 5/Z15 15 (3) 6/Z16 7-(4) 7/Z 17 (<u>9)</u> A0 (7)_A1 V18 **2**α (6) A2 (5) EΝα EI-

logic diagrams

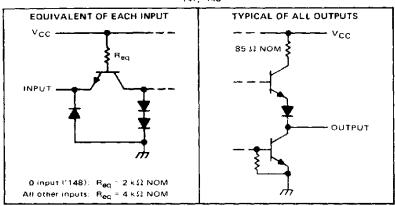
148, 'LS148

0 (15) E0

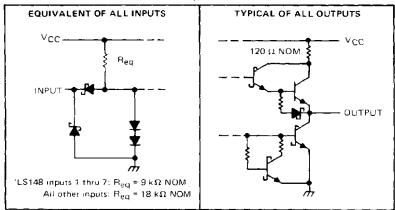
1 (11) (14) GS

2 (12) (13) (14) GS

4 (1) (7) A1


6 (3) (6) A2

E1 (5)


Pin numbers shown are for D, J, N, and W packages.

schematics of inputs and outputs

1147, 1148

'LS147, 'LS148

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, VCC (see Note 1)												. 7 V
Input voltage: '147, '148												5.5 V
'LS147, 'LS148												
Interemitter voltage: '148 only (see Note 2)					,							5.5 V
Operating free-air temperature range: SN541, SN54LS Circuits								_Ę	55°	C t	to	125°C
SN74', SN74LS Circuits												
Storage temperature range												

- NOTES: 1. Voltage values, except interemitter voltage, are with respect to network ground terminal.
 - 2. This is the voltage between two emitters of a multiple-emitter transistor. For '148 circuits, this rating applies between any two of the eight data lines, 0 through 7.

recommended operating conditions

		SN54'			SN74'			SN54LS	3'		SN74LS	3.	
	MIN	NOM	MAX	MIN	NOM	MAX	MIN	NOM	MAX	MIN	NOM	MAX	UNIT
Supply voltage, V _{CC}	4.5	5	5.5	4.75	5	5.25	4.5	5	5.5	4.75	5	5.25	V
High-level output current, IOH			-800			-800			-400			-400	μА
Low-level autput current, IOL			16			16			4			8	mA
Operating free-air temperature, TA	- 55		125	0		70	55		125	0		70	С

SN54147, SN54148, SN74147, SN74148 (TIM9907) 10-LINE TO 4-LINE AND 8-LINE TO 3-LINE PRIORITY ENCODERS

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

	PARAME1	reo	TEST CO	NDITIONS†		'147			148		
	TANAME	En	1 1 231 00	MOTTONS	MIN	TYP	MAX	MIN	TYP‡	MAX	TINUT
VIH	High-level input voltage	-	1		2			2			V
VIL	Low-level input voltage						0.8			0.8	V
VIK	Input clamp voltage		VCC = MIN,	I ₁ = -12 mA			-1.5			-1.5	ν
Vон	High-level output voltage		V _{CC} = MIN, V _{IL} = 0.8 V,	V _{IH} = 2 V, I _{OH} = -800 µA	2.4	3.3		2.4	3.3		٧
VOL	Low-level output voltage		VCC = MIN, VIL = 0.8 V,	V _{IH} = 2 V, I _{OL} = 16 mA		0.2	0.4	-	0.2	0.4	V
l _j	Input current at maximum	input voltage	VCC = MAX,	V ₁ = 5.5 V	Ţ <u></u>		1			1	mA
		0 input	V - 144 V						-	40	Γ.
ин	High-level input current	Any input except 0	VCC = MAX,	V = 2.4 V			40			80	μΑ
		0 input	V MARY	14 = 0.414						-1.6	
11L	Low-level input current	Any input except 0	VCC = MAX,	VI - 0.4 V			-1.6			-3.2	mA
los	Short-circuit output currer	rt [§]	V _{CC} = MAX		-35		-85	35		-85	mA
	Supply support		V _{CC} = MAX,	Condition 1		50	70		40	60	mΑ
'cc	Supply current		See Note 3	Condition 2		42	62	1	35	55	mΑ

NOTE 3: For '147, I_{CC} (condition 1) is measured with input 7 grounded, other inputs and outputs open; I_{CC} (condition 2) is measured with all inputs and outputs open. For '148, I_{CC} (condition 1) is measured with inputs 7 and EI grounded, other inputs and outputs open; I_{CC} (condition 2) is measured with all inputs and outputs open.

SN54147, SN74147 switching characteristics, $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$

PARAMETER*	FROM (INPUT)	TO (OUTPUT)	WAVEFORM	TEST CONDITIONS	MIN	TYP	MAX	UNIT
^t PLH	Any	Anv	In-phase	Cլ = 15 pF,		9	14	
1PHL			output	$R_1 = 400 \Omega_1$		7	11	DS
ФГН	Anv	Anv	Out-of-phase	See Note 4		13	19	
tPHL_			output	See Note 4		12	19	ns _

SN54148, SN74148 switching characteristics, V_{CC} = 5 V, T_A = 25°C

PARAMETER*	FROM (INPUT)	TO (OUTPUT)	WAVEFORM	TEST CONDITIONS	MIN	TYP	MAX	UNIT	
†PLH	1 thru 7	A0, A1, or A2	In-phase			10	15		
†PHL		, NO, A1, 01 A2	output	Ì		9	14	ns	
† PL H	1 thru 7	A0, A1, or A2	Out-of-phase			13	19		
[†] PHL	1 thru 7	A0, A1, 01 A2	Output	Ì		12	19	ns I	
[†] PLH	0 thru 7	EO	Out-of-phase			6	10	\vdash	
[†] PHL	O (mru /	10	output	0 - 15 - 5		14	25	ns	
IPLH	O thru 7	GS	In-phase	C _L = 15 pF,		18	30		
1PHL	O IIII U 7	05	Output	R = 400 Ω, See Note 4		14	25	ns	
tPLH .	E1	A0, A1, pr A2	In-phase	See Wote 4		10	15		
†PHL	E1	AU, A1, 0r A2	Output			10	15	ns	
[†] PLH	E1	GS	In-phase	7		8	12		
tPHL	 EI	output			10	15	ns		
[†] PLH		Ei EO In-		In-phase			10 15		
¹PHL		1	output			17	30	ns	

 $[\]mathbf{f}_{\mathsf{tpLH}} = \mathsf{propagation}$ delay time, low-to-high-level output

NOTE 4: Load circuits and voltage waveforms are shown in Section 1.

[†]For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

 $^{^{\}circ}$ Ail typical values are at V $_{CC}$ \times 5 V, T $_{A}$ = 25 C

Not more than one output should be shorted at a time

tpHL = propagation delay time, high-to-low-level output

SN54LS147, SN54LS148, SN74LS147, SN74LS148 10-LINE TO 4-LINE AND 8-LINE TO 3-LINE PRIORITY ENCODERS

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

			7507.001	out out		SN54L	S'		SN74L8	3'	
	PARAMET	ER	IESI CON	IDITIONST	MIN	TYP‡	MAX	MIN	TYP‡	MAX	UNIT
v_{IH}	High-level input voltage			-	2			2			V
VIL	Low-level input voltage						0.7			0.8	V
ViK	Input clamp voltage		V _{CC} = MIN,	I _I = −18 mA			-1.5			-1.5	V
voн	High-level output voltage		V _{CC} = MIN, V _{IL} = 0.8 V,	V _{IH} ≈ 2 V I _{OH} = −400 μA	2.5	3.4		2.7	3.4		v
Vo.	Low-level output voltage		V _{CC} = MIN, V _{IH} = 2 V.	IOL = 4 mA		0.25	0.4		0.25	0.4	V
- 01	DE Com-tenet ontbut notrage		VIL = VILmax	IOL - 8 mA				l	0.35	0.5	
	Input current at	'LS148 inputs 1 thru 7	V _{CC} = MAX,	V. = 7 V			0.2			0.2	mA.
ti	maximum input voltage	All other inputs	VCC - MAX,	VI - 7 V			0,1			0.1	_ ····
,	1 Pala Janual Santa announce	'LS148 inputs 1 thru 7	Vcc = MAX,	V. = 3.7.V	L		40			40	
JIН	High-level input current	All other inputs	ACC - MAY	V1 - 2.7 V			20			20	μA
	1 11	'LS148 inputs 1 thru 7	V	V = 0.4.V	-		-0.8			-0.8	
HL	Low-level input current	All other inputs	V _{CC} = MAX,	V - 0.4 V			-0.4			-0.4	mΑ
los	Short-circuit output curren	t \$	V _{CC} = MAX		-20	, and the second	-100	-20		-100	mΑ
lan	Supply current		VCC = MAX,	Condition 1		12	20		12	20	mΑ
1cc			See Nate 5	Condition 2		10	17		10	17	mΑ

NOTE 5: For 'LS147, I_{CC} (condition 1) is measured with input 7 grounded, other inputs and outputs open, I_{CC} (condition 2) is measured with all inputs and outputs open. For 'LS148, I_{CC} (condition 1) is measured with inputs 7 and EI grounded, other inputs and outputs open, I_{CC} (condition 2) is measured with all inputs and outputs open.

SN54LS147, SN74LS147 switching characteristics, $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$

PARAMETER*	FROM (INPUT)	TO (OUTPUT)	WAVEFORM	TEST CONDITIONS	MIN	TYP	MAX	UNIT
tPLH	Апу	Any	In-phase	CL = 15 pF.		12	18	ns
tPHL	All y	~''Y	output	$R_1 = 2 k\Omega$,	[12	18	'''
tРLН	Any	Any	Out-of-phase	See Note 4		21	33	rıs .
tPHL	Court	~,	putput	See Note 4		15	23	1/3

SN54LS148, SN74LS148 switching characteristics, VCC = 5 V, TA = 25°C

· · · · · · · · · · · · · · · · · · ·		•	• , ,,					
PARAMETER*	FROM (INPUT)	TO (OUTPUT)	WAVEFORM	TEST CONDITIONS	MIN	TYP	MAX	וואט
tPLH .	1 thru 7	A0, A1, or A2	In-phase			14	18	
1PHL	111107	A0, A1, 01 A2	output			15	25	ns
^t PLH	1 thru 7	A0, A1, or A2	Out-of-phase	7		20	36	
tPHL	I thru /	A0, A1, 01 A2	Output			16	29	ns
1PLH	0 thru 7	EO	Out-of-phase	7		7	18	1
tPHL .	O tilla 7	1	output	C 15 - F		25	40	ns
TPLH	Othru 7	GS	In-phase	- C _L = 15 pF.		35	55	
tPHL	O and 7		autput	$R_L = 2 k\Omega$		9	21	175
tPLH	EI	A0, A1, or A2	In phase	See Note 4		16	25	
^t PHL		AU, AT, OF A2	Output	•		12	25	ns
tPLH .	EI		In-phase			12	17	
tPHL		GS	output			14	36	{ ns
tPLH	EI	EO	In-phase	7	12	12	21	1
tPHL	CI	}	output			23	35	ns

TPHL propagation delay time, low to high level output tPHL propagation delay time, high to low level output

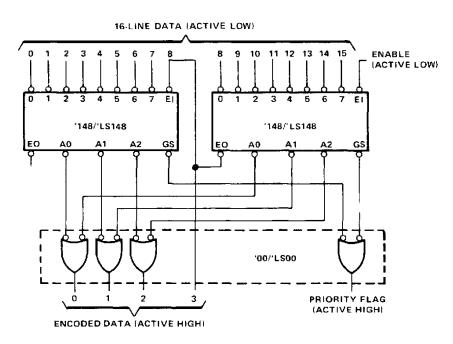
NOTE 4: Load circuits and voltage waveforms are shown in Section 1.

¹For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions,

 $[\]frac{1}{2}$ All typical values are at V_{CC} = 5 V, T_A = 25 C.

Not more than one output should be shorted at a time

16-LINE DATA (ACTIVE LOW) 0 1 2 3 4 5 6 7 8 8 9 10 11 12 13 14 15 ENABLE (ACTIVE LOW) 0 1 2 3 4 5 6 7 EI 148/'LS148 EO AO A1 A2 GS EO AO A1 A2 GS


'08/'L\$08

PRIORITY FLAG (ACTIVE LOW)

TYPICAL APPLICATION DATA

3

ENCODED DATA (ACTIVE LOW)

Since the '147/'LS147 and '148/'LS148 are combinational logic circuits, wrong addresses can appear during input transients. Moreover, for the '148/'LS148 alichange from high to low at input EI can cause a transient low on the GS output when all inputs are high. This must be considered when strobing the outputs.

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any semiconductor product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

TI warrants performance of its semiconductor products and related software to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

Certain applications using semiconductor products may involve potential risks of death, personal injury, or severe property or environmental damage ("Critical Applications").

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS.

Inclusion of TI products in such applications is understood to be fully at the risk of the customer. Use of TI products in such applications requires the written approval of an appropriate TI officer. Questions concerning potential risk applications should be directed to TI through a local SC sales office.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards should be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or services described herein. Nor does TI warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used.

Copyright © 1996, Texas Instruments Incorporated