- Package Options Include Plastic 'Small Outline' Packages, Ceramic Chip Carriers, and Plastic and Ceramic DIPs
- Dependable Texas Instruments Quality and Reliability

description

The '107 contain two independent J-K flip-flops with individual J-K, clock, and direct clear inputs. The '107 is a positive pulse-triggered flip-flop. The J-K input data is loaded into the master while the clock is high and transferred to the slave and the outputs on the high-to-low clock transistion. For these devices the J and K inputs must be stable while the clock is high.

The 'LS107A contain two independent negative-edgetriggered flip-flops. The J and K inputs must be stable prior to the high-to-low clock transition for predictable operation. When the clear is low, it overrides the clock and data inputs forcing the Q output low and the \overline{Q} output high.

The SN54107 and the SN54LS107A are characterized for operation over the full military temperature range of -55 °C to 125 °C. The SN74107 and the SN74LS107A are characterized for operation from 0 °C to 70 °C. SN74107, SN74LS107A DUAL J-K FLIP-FLOPS WITH CLEAR

DECEMBER 1983 - REVISED MARCH 1988

TL Devices

EADINGS-UNIVERS

Body Copy

PRODUCTION DATA documents contain information current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.

ومدجودة جرود الداري

2-319

1

SN74107, SN74LS107A DUAL J-K FLIP-FLOPS WITH CLEAR

2-320

311341U/, 31134L31U/A, SN74107, SN74LS107A **DUAL J·K FLIP·FLOPS WITH CLEAR**

'107"NER ADENO'S -UN 11 小制 合体的 医胚肌 143 'LS107A 1J (1) (1) 1J 1J 1CLK (12) 1.1 10 (12) <u>(3)</u> 10 (3) 10 C1 >C1 1K (4) (2) 10 1K-(4) (2) 10 1K 1 K 1CLR (13) 1CLR (13) R R 2J (8) 2J (8) sι (5) 20 2CLK-(9) (5) 20 2CLK (9) 2K (11) (6) 20 (6) 20 (11) pas, inder 2K-(10) (10) 2CLR 2CLR

[†]These symbols are in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12. Pin numbers shown are for D, J, and N packages.

schematic of inputs and outputs

'107

	3	•
Supply voltage, VCC (see Note 1) .		7 V
Input voltage: '107		5.5 V
Operating free-air temperature range	: SN54'	– 55°C to 125°C
	SN74′	0°C to 70°C
Storage temperature range		$\dots -65^{\circ}C$ to $150^{\circ}C$

NOTE 1: Voltage values are with respect to network ground terminal.

Ł

2

TTL Devices

SN54107, SN74107 DUAL J·K FLIP-FLOPS WITH CLEAR

recommended operating conditions

		· · · ·		SN54107			SN74107		
			MIN	NOM	MAX	MIN	NOM	MAX	UNIT
Vcc	Supply voltage		4.5	5	5.5	4.75	5	5.25	V
VIH	High-level input voltage		2			2			V
VIL	Low-level input voltage				0.8			0.8	V
юн	High-level output current				- 0.4			- 0.4	mA
IOL	Low-level output current				16			16	mΑ
		CLK high	20			20			
tw	Pulse duration	CLK low	47			47			ns
		CLR low	25			25			
t _{su}	Input setup time before CLK↑		0			0	_		ns
th	Input hold time-data after CLK†		0			0			ns
Τ _A	Operating free-air temperature		- 55		125	0		70	°C

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

ļ	•
ł	2
	1
	г —
	Ď
	e <
	ត
	es S

PARAMETER		TEST CONDITIONS [†]			SN5410	7		UNIT							
РАН	AMELER		TEST CONDITIO	2012	MIN	TYP‡	MAX	MIN	TYP‡	MAX	UNIT				
Vik		V _{CC} = MIN,	I _I = – 12 mA				- 1.5			- 1.5	V				
Varia		V _{CC} = MIN,	V _{IH} = 2 V,	V _{IL} = 0.8 V,	2.4	24	24	24	24	3.4		2.4	3.4		v
∨он		I _{OH} = - 0.4 mA						2.4							
Ve		V _{CC} = MIN,	V _{IH} = 2 V,	V _{IL} = 0.8 V,		0.2	0.4		0.2	0.4	v				
VOL		I _{OL} = 16 mA				0.2	0.4		0.2	0.4					
4		V _{CC} = MAX,	V _I = 5.5 V				1			1	mA				
	J or K		V ₁ = 2.4 V				40			40	μA				
Чн	All other	V _{CC} = MAX,	V - 2.4 V				80			80	μ-				
	J or K		V1 = 0.4 V				- 1.6			- 1.6	mA				
46	All other	V _{CC} = MAX,	v] - 0.4 v				- 3.2			- 3.2	IIIA				
IOS §	•	V _{CC} = MAX			20		- 57	- 18		- 57	mA				
Icc1		V _{CC} = MAX,	See Note 2			10	20		10	20	mA				

[†]For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

[‡]All typical values are at $V_{CC} = 5 V$, $T_A = 25^{\circ} C$.

[§]Not more than one output should be shorted at a time.

Average per flip-flop.

NOTE 2: With all outputs open, I_{CC} is measured with the Q and \overline{Q} outputs high in turn. At the time of measurement, the clock input is grounded.

switching characteristics, V_{CC} = 5 V, $T_A = 25^{\circ}C$ (see note 3)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	TEST CONDIT	MIN	түр	МАХ	υνιτ		
^f max					15	20		MHz	
^t PLH		ā				16	25	ns	
^t PHL	CLR	CLR	Q R _L = 400 Ω,	R _L = 400 Ω,	C _L = 15 pF		25	40	ns
tPLH		0.5				16	25	ns	
^t PHL	CLK	Q or \overline{Q}				25	40	ns	

NOTE 3: Load circuits and voltage waveforms are shown in Section 1.

SN54LS107A, SN74LS107A DUAL J-K FLIP-FLOPS WITH CLEAR

recommended operating conditions

			S	N54LS1	07A	SN74LS107A			
			MIN	NOM	MAX	MIN	NOM	MAX	UNIT
Vcc	Supply voltage		4.5	5	5.5	4.75	5	5.25	V
VIH	High-level input voltage	High-level input voltage				2			V
VIL	Low-level input voltage				0.7			0.8	V
юн	High-level output current				- 0.4			- 0.4	mA
IOL	Low-level output current				4			8	mA
fclock	Clock frequency		0		30	0		30	MHz
	Pulse duration	CLK high	20			20			
tw	Pulse duration	CLR low	25			25			ns
	Seture time hafene CLKL	data high or low	20			20			
tsu	Setup time before CLK↓ CLR inactive		25			25			ns
th	Hold time-data after CLK↓		0			0			ns
TA	Operating free-air temperature		- 55		125	0		70	°C

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

ВА	PARAMETER TEST CONDITIONS [†]			SN	54LS10)7A	SN	174LS10	07A	UNIT		
- FA	NAMETEN		EST CONDITION	N9.	MIN	TYP‡	MAX	MIN	TYP‡	MAX	UNIT	
VIK		V _{CC} = MIN,	l _l = – 18 mA				- 1.5			- 1.5	V	
∨он		⁻ V _{CC} = MIN, I _{OH} = – 0.4 mA	V _{IH} = 2 V,	V _{IL} = MAX,	2.5	3.4	·	2.7	3.4		v	
Vai	·	V _{CC} = MIN, I _{OL} = 4 mA	V _{IL} = MAX,	V _{IH} = 2 V,		0.25	0.4		0.25	0.4		
VOL		V _{CC} = MIN, I _{OL} = 8 mA	VIL = MAX,	V _{IH} = 2 V,					0.35	0.5	V	
	J or K						0.1			0.1		
-tj	CLR	V _{CC} = MAX,	V ₁ = 7 V				0.3			0.3	mA	
	CLK				_		0.4			0.4		
	J or K						20			20		
ЧΗ	CLR	V _{CC} = MAX,	V _I = 2.7 V				60			60	μA	
	CLK						80			80		
1	J or K	V _{CC} = MAX,	V ₁ = 0.4 V				- 0.4			- 0.4	mA	
հե	CLR or CLK		vi - 0.4 v				- 0.8			- 0.8	IIIA	
IOS§		V _{CC} = MAX,	See Note 4		- 20		- 100	- 20		- 100	mA	
ICC (Total)	V _{CC} = MAX,	See Note 2			4	6		4	6	mA	

[†]For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

 \ddagger All typical values are at V_{CC} = 5 V, T_A = 25°C.

§Not more than one output should be shorted at a time, and the duration of the short circuit should not exceed one second.

NOTE 2: With all outputs open, I_{CC} is measured with the Q and Q, outputs high in turn. At the time of measurement, the clock input is grounded.

NOTE 4: For certain devices where state commutation can be caused by shorting an output to ground, an equivalent test may be performed with $V_0 = 2.25$ V and 2.125 V for the 54 family and the 74 family, respectively, with the minimum and maximum limits reduced to one half of their stated values.

PARAMETER	FROM (INPUT)	TO (OUTPUT)	TEST COM	MIN	түр	МАХ	UNIT	
^f max					30	45		MHz
^t PLH	CLR or CLK	Q or Q	R _L = 2 kΩ,	С _L ≃ 15 pF		15	20	ns
^t PHL	CLH OF CLK					15	20	ns

NOTE 3: Load circuits and voltage waveforms are shown in Section 1.

switching characteristics, $V_{CC} = 5 V$, $T_A = 25^{\circ}C$ (see note 3)

2

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any semiconductor product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

TI warrants performance of its semiconductor products and related software to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

Certain applications using semiconductor products may involve potential risks of death, personal injury, or severe property or environmental damage ("Critical Applications").

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS.

Inclusion of TI products in such applications is understood to be fully at the risk of the customer. Use of TI products in such applications requires the written approval of an appropriate TI officer. Questions concerning potential risk applications should be directed to TI through a local SC sales office.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards should be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or services described herein. Nor does TI warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used.

Copyright © 1996, Texas Instruments Incorporated