SN54LS138, SN54S138, SN74LS138, SN74S138A 3-LINE TO 8-LINE DECODERS/DEMULTIPLEXERS

SDLS014

- Designed Specifically for High-Speed: Memory Decoders
 Data Transmission Systems
- 3 Enable Inputs to Simplify Cascading and/or Data Reception
- Schottky-Clamped for High Performance

description

These Schottky-clamped TTL MSI circuits are designed to be used in high-performance memory decoding or data-routing applications requiring very short propagation delay times. In high-performance memory systems, these docoders can be used to minimize the effects of system decoding. When employed with highspeed memories utilizing a fast enable circuit, the delay times of these decoders and the enable time of the memory are usually less than the typical access time of the memory. This means that the effective system delay introduced by the Schottky-clamped system decoder is negligible.

The 'LS138, SN54S138, and SN74S138A decode one of eight lines dependent on the conditions at the three binary select inputs and the three enable inputs. Two active-low and one active-high enable inputs reduce the need for external gates or inverters when expanding. A 24-line decoder can be implemented without external inverters and a 32-line decoder requires only one inverter. An enable input can be used as a data input for demultiplexing applications.

All of these decoder/demultiplexers feature fully buffered inputs, each of which represents only one normalized load to its driving circuit. All inputs are clamped with high-performance Schottky diodes to suppress line-ringing and to simplify system design.

The SN54LS138 and SN54S138 are characterized for operation over the full military temperature range of -55 °C to 125 °C. The SN74LS138 and SN74S138A are characterized for operation from 0 °C to 70 °C.

DECEMBER 1972-REVISED MARCH 1988

SN54LS138, SN54S138 J OR W PACKAGE SN74LS138, SN74S138A D OR N PACKAGE (TOP VIEW)
$A \begin{bmatrix} 1 \\ 0 \end{bmatrix} 16 \end{bmatrix} V_{CC}$ $B \begin{bmatrix} 2 \\ 15 \end{bmatrix} Y0$ $C \begin{bmatrix} 3 \\ 14 \end{bmatrix} Y1$ $\overline{G}2A \begin{bmatrix} 4 \\ 13 \end{bmatrix} Y2$ $\overline{G}2B \begin{bmatrix} 5 \\ 12 \end{bmatrix} Y3$ $G1 \begin{bmatrix} 6 \\ 11 \end{bmatrix} Y4$ $Y7 \begin{bmatrix} 7 \\ 10 \end{bmatrix} Y5$ $GND \begin{bmatrix} 8 \\ 9 \end{bmatrix} Y6$
SN54LS138, SN54S138 FK PACKAGE (TOP VIEW)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

NC-No internal connection

logic symbols[†]

 [†]These symbols are in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.
 Pin numbers shown are for D, J, N, and W packages.

Copyright © 1972, Texas Instruments Incorporated

mbers shown are for D, S, N, and W packages

PRODUCTION DATA documents contain information current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.

SN54LS138, SN54S138, SN74LS138, SN74S138A 3-LINE-TO 8-LINE DECODERS/DEMULTIPLEXERS

logic diagram and function table

Pin numbers shown are for D, J, N, and W packages.

	I)	IPUT	S							~		
ENABLE		S	SELECT			OUTPUTS						
G1	Ğ2*	С	8	Α	YO	Y1	Y2	Y3	Y4	Y5	Y6	¥7
х	н	X	x	X	н	н	н	Н	H	н	Н	н
L	х	x	х	x	н	н	н	н	н	н	н	н
н	Ĺ	L	L	L	L	н	н	н	н	н	н	н
н	L	L	L	н	н	Ļ	н	н	н	н	н	н
н	L	L	н	L	н	н	L	н	н	н	н	H
н	L	L	н	н	н	н	н	L	н	Н	н	н
н	L	н	Ļ	L	н	н	н	н	L	н	Н	н
н	L	н	L	н	н	н	н	н	н	L.	н	н
н	Ł	н	н	L	н	н	н	Н	н	н	L	н
н	L	н	н	н	н	н	н	н	н	н	н	L

'LS138, SN54138, SN74S138A FUNCTION TABLE

* $\overline{G}2 = \overline{G}2A + \overline{G}2B$ H = high level, L = low level, X = irrelevant

SN54LS138, SN54S138, SN74LS138, SN74S138A 3-LINE TO 8-LINE DECODERS/DEMULTIPLEXERS

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, VCC (see Note 1)
Input voltage
Operating free-air temperature range: SN54LS138, SN54S138
SN74LS138, SN74S138A
Storage temperature range

NOTE 1: Voltage values are with respect to network ground terminal.

SN54LS138, SN74LS138 3-LINE TO 8-LINE DECODERS/DEMULTIPLEXERS

recommended operating conditions

		SI	N54LS1	38	SI	N74LS1	38	
		MIN	NOM	MAX	MIN	NOM	MAX	UNIT
Vcc	Supply voltage	4.5	5	5.5	4.75	5	5.25	V
VIH	High-level input voltage	2			2			v
VIL	Low-level input voltage			0.7			0.8	v
ЮН	High-level output current			-0.4			-0.4	mA
^I OL	Low-level output current			4			8	mA
TA	Operating free-air temperature	- 55		125	0		70	°C

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER				SN54LS138			S				
PARAMETER		MIN	TYP‡	MAX	MIN	TYP	MAX				
⊻ік	VCC = MIN,	_lj = -18 mA				- 1.5			-1.5	V	
Voн	V _{CC} = MIN, I _{OH} = -0.4 m	$V_{IH} = 2 V, V_{IL} = MAX,$		2.5	3.4		2.7	3.4		v	
	$V_{CC} = MIN,$	$V_{\rm H}$ = 2 V,	IOL = 4 mA		0.25	0.4		0.25	0.4		
VOL	$V_{IL} = MAX$		1 _{0L} = 8 mA					0.35	0.5	v	
ч	VCC = MAX	$V_{I} \neq 7 V$				Q.1			0.1	mA	
ЧН	$V_{CC} = MAX,$	VI = 2.7 V				20			20	μA	
- <u>-</u>	Vcc = MAX,		Enable			-0.4			-0.4	mА	
կլ	VCC = MAA,	VI = 0:4 V	A, B, C			-0.2			-0.2	ША	
los [§]	VCC - MAX			- 20		- 100	- 20		- 100	mΑ	
^I CC	$V_{CC} = MAX$	Outputs enabled and open			6.3	10		6.3	10	mA	

[†] For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

[‡] All typical values are at V_{CC} = 5 V, $T_A = 25$ °C. [§]Not more than one output should be shorted at a time, and duration of the short-circuit test should not exceed one second.

PARAMETER	TER ¹ FROM TO LEVELS TEST CONDITIONS		154LS1: 174LS1:	UNIT																
	(INPUT)		OF DELAY			MIN	TYP	MAX												
^t PLH			2				11	20	ns											
^t PHL	Binary		•		A				A		*	.	A	2				18	41	ns
tpLH	Select	Απγ					21	27	ns											
^t PHL			3	RL = 2 kΩ.	Сլ = 15 рЕ,		20	39	ns											
^t PLH												See Note 2		12	18	ns				
tPHL	Enable		2	2	2	2	2	2			20	32	Э ns 3 ns 2 ns							
tPLH		Αηγ	2			(14	26	ns											
^t PHL			ۍ ا				13	38	ns											

switching characteristics, VCC = 5 V, TA = 25° C

 $\P_{tp_{LH}}$ = propagation delay time, low-to-high-level ouput

tpHL = propagation delay time, high-to-low-level output NOTE 2: Load circuits and voltage waveforms are shown in Section 1.

SN54S138, SN74S138A 3-LINE TO 8-LINE DECODERS/DEMULTIPLEXERS

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, VCC (see Note 1)		<i>.</i>	 7 V
Input voltage			 5.5 V
Operating free-air temperature range:	SN54S138		 –55°C to 125°C
	SN74S138A		 0°C to 70°C
Storage temperature range			 -65°C to 150°C

NOTE 1: Voltage values are with respect to network ground terminal.

recommended operating conditions

			SN54S138 SN74S138			8A	UNIT	
		MIN	NOM	MAX	MIN	NOM	MAX	UNIT
Vcc	Supply voltage	4.5	5	5.5	4.75	5	5.25	V
VIH	High-level input voltage	2			2			V
VIL	Low-level input voltage			0.8			0.8	V
юн	High-level output current			- 1			-1	mΑ
^I OL	Low-level output current			20			20	mA
TA	Operating free-air temperature	- 55		125	0		70	°C

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	-	SN54S138 SN74S138A			UNIT		
				MIN	TYP [‡]	MAX	
Vik	$V_{CC} = MIN$	l∣ = −18 mA				-1.2	v
N	Martin Ballhi		SN54S'	2.5	3.4		V
∨он	V _{CC} ≠ MIN,	$V_{IH} = 2 V$, $V_{IL} = 0.8 V$. $I_{OH} = -1 mA$	SN74S'	2.7	3.4		· ·
VOL	$V_{CC} = MIN,$	V _{IH} = 2 V, V _{IL} = 0.8 V, I _{OL} = 20 mA				0.5	V
4	$V_{CC} = MAX$	$V_{ } = 5.5 V$				1	mA
^I IH	VCC = MAX.	VI = 2.7 V				50	μA
۱ <u>۱</u> ۲	$V_{CC} = MAX,$	$V_1 = 0.5 V$				- 2	mΑ
los§	$V_{CC} = MAX$			-40	_	- 100	mA
'cc	$V_{CC} = MAX,$	Outputs enabled and open			49	74	mΑ

[†] For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

[‡]All typical values are at V_{CC} = 5 V, T_A = 25 °C.

[§] Not more than one output should be shorted at a time, and duration of the short circuit test should not exceed one second.

SN54S138, SN74S13BA **3-LINE TO 8-LINE DECODERS/DEMULTIPLEXERS**

switching characteristics, $V_{CC} = 5 V$, $T_A = 25 °C$

PARAMETER	FROM TO LEVELS TEST CONDITIONS		SN54S138 SN74S138A			UNIT												
	(INPUT)	(OUTPUT)	OF DELAY		MIN	ТҮР	MAX											
^t PLH			2			4.5	7	ns										
^t PHL	Binary		4	A	A	4	4	4	4.000	A	2			7	10.5	ns		
tPLH	Select	Any	3]		7.5	12	ns										
^t PHL		1	3	R _L ≕ 280 Ω, C _L = 15 pF		8	12	ns										
tPLH							<u> </u>						2	See Note 2		5	8	กร
^t PHL	Enable		2			7	11	ns										
^t PLH		Any		}	_	7	11	ns										
^t PHL		1 1							3	1		7	11	ris				

[†]tPLH = propagation delay time, low-to-high-level output
 tpHL = propagation delay time, high-to-low-level output
 NOTE 2: Load circuits and voltage waveforms are shown in Section 1.

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any semiconductor product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

TI warrants performance of its semiconductor products and related software to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

Certain applications using semiconductor products may involve potential risks of death, personal injury, or severe property or environmental damage ("Critical Applications").

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS.

Inclusion of TI products in such applications is understood to be fully at the risk of the customer. Use of TI products in such applications requires the written approval of an appropriate TI officer. Questions concerning potential risk applications should be directed to TI through a local SC sales office.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards should be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or services described herein. Nor does TI warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used.

Copyright © 1996, Texas Instruments Incorporated