SDLS005 D2747, JUNE 1983 - REVISED MARCH 1988

- 8-Bit Serial-In, Parallel-Out Shift Registers with Storage
- Choice of Output Configurations: 'LS594 ... Buffered 'LS599 ... Open-Collector
- Guaranteed Shift Frequency: DC to 20 MHz
- Independent Direct-Overriding Clears on Shift and Storage Registers
- Independent Clocks for Both Shift and Storage Registers

description

These devices each contain an 8-bit D-type storage register. The storage register has buffered ('LS594) or open-collector ('LS599) outputs. Separate clocks and direct-overriding clears are provided on both the shift and storage registers. A shift output (Ω_H ') is provided for cascading purposes.

Both the shift register and the storage register clocks are positive-edge triggered. If the user wishes to connect both clocks together, the shift register will always be one clock pulse ahead of the storage register.

Ω _B (Ω _C (Ω _D (Ω _F (Ω _F (Ω _H (1 2 3 4 5 6 7	16 15 14 13 12 11 10	VCC QA SER RCLR RCLR RCK SRCK SRCLR
GND (8	9] 0 _H

SN54LS594, SN54LS599 . . . FK PACKAGE (TOP VIEW)

NC - No internal connection

PRODUCTION DATA documents contain information current as of publication data. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.

schematics of inputs and outputs

Pin numbers shown are for J, N, and W packages.

(15)

(1)

(2)

(3)

ОĄ

 $\mathbf{u}_{\mathbf{8}}$

ac

٥Đ (4) (4) (4) (4)

۵F (6) (6)

(7) (7) 0H

191 OH

logic symbols[†] 'L\$599 'LS594 ACL8 (13) p ACLA (13) - A3 RJ нск <u>(12)</u> 1121 5 6 2 RCX bcz SRG8 SRG8 SACLA (10) (10) C R SRCLR R SRCK (11) (11) C1/⊢ SRCK C1/-SER (14) (15) (14) SER 20 b 3 Q Qд ۱D 20 Þ 1D (1) QB {Z1 $o_{\rm C}$ (3) ΟD (4) ٥_E (5) QF (6) 0G (<u>7)</u> 0_H 2D 🕨 3 🕻 2D 🗩 (9) 0H ₽ Þ

[†]These symbols are in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

Pin numbers shown are for J, N, and W packages.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, Vcc (see Note 1)	
	5.5 V
	4LS599
Operating free-air temperature range: SNb4LS594, SNb	415999
SN74LS594, SN7	4LS599 0°C to 70°C
Storage temperature range	

NOTE 1: Voltage values are with respect to the network ground terminal.

recommended operating conditions

			SN54LS'			SN74LS'			UNIT	
			MIN	NOM	MAX	MIN	NOM	MAX	UNIT	
Vcc	Supply voltage		4.5	5	5.5	4.75	5	5.25	V	
VIH	High-level input voltage		2			2			V	
	Low-level input voltage				0.7			0.8	V	
∨он	High-level output voltage	Q _A thru Q _H , 'LS599 only			5.5			5.5	V	
		Q _H '			_ 1			- 1	mA	
юн	High-level output current	Q _A thru Q _H , 'LS594 only			- 1			2.6		
		QH,			8			16	mA	
IOL	Low-level output current	a	1		12			24		
fSRCK	Shift clock frequency	, k	0		20	0		20	MHz	
FRCK	Register clock frequency				25	0		25	MHz	
tw(SRCK)	Duration of shift clock pulse					25			ns	
twiRCK)	Duration of register clock pulse					20			ns	
tw(SRCLR)	R) Duration of shift clear pulse, low level					20			ns	
tw(RCLR)	Duration of register clear pu	ise, low level	35			35			ns	
†su S		SRCLR inactive before SRCK1	20			20				
	Setup time	SER before SRCK1	20			20				
		SRCK1 before RCK1 (see Note 2)	40			40			ns	
		SRCLR low before RCK t	40			40				
		RCLR high before RCK1	20			20				
^t h	Hold time	SER after SRCK†	0			0			ns	
Тд	Operating free-air temperatu	JIE	- 55		125	0		70	, C	

NOTE 2: This setup time ensures the register will see stable data from the shift-register outputs. The clocks may be connected together, in which case the storage register state will be one clock pulse behind the shift register.

PARAMETER		TEST CONDITIONS [†]		SN54LS'							
		TEST CONDITIONS *			MIN	TYP‡	MAX	MIN	TYP‡	MAX	UNIT
VIК		V _{CC} = MIN,				- 1.5	+		- 1.5	v	
	′L\$594 Q	V. – MIN	V _{IH} = 2 V,	^I OH = - 1 mA	2.4	3.2					
∨он	1 13394 0			∣он = ~ 2.6 пА				2.4	3.1		v
	a _H ′	V _{IL} = MAX		OH = - 1 mA	2.4	3.2		2.4	3.2		
юн	'LS599 Q	V _{CC} = MIN, V _{OH} = 5.5 V	V _{IH} = 2 V,	VIL = MAX,			0.1			0.1	mA
V _{OL} <u>Q</u> H'			I _{OL} = 12 mA		0.25	0.4		0.25	0.4		
	<u> </u>	V _{CC} = MIN,	V1H = 2 V,	I _{OL} = 24 mA					0.35	0.5	l v
	VIL = MAX		IOL = 8 mA		0.25	0.4		0.25	0.4	ľ	
		-	_	IOL = 16 mA					0.35	0.5	1
կ		V _{CC} = MAX,					0.1			0.1	mA
Чн		V _{CC} = MAX,	V ₁ = 2.7 V				20			20	μA
1	SER	Vcc = MAX	<u> </u>				- 0.4			0.4	mA
μL	All others		v] - 0,4 v				- 0.2			- 0.2	
1008	'LS594 Q	Ver - MAY			- 30		- 130	- 30		- 130	mA
los§	QH,	V _{CC} = MAX,	v0 = 0		- 20		- 100	- 20		100	
	'L\$594				1	34	50		34	50	
ГССН	'LS599		V _{CC} = MAX, All possible inputs grounded,		-	30	45		30	45	mA
1	'L\$594	- · · ·	-			42	65	<u> </u>	42	65	
CCL	'LS599	All outputs ope	#1			38	55	<u> </u>	38	55	mA

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

t For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions. ‡ All typical values are at $V_{CC} = 5 V$, $T_A = 25^{\circ}$ C. $\frac{9}{3}$ Not more than one output should be shorted at a time, and duration of the short-circuit should not exceed one second.

switching characteristics, $V_{CC} = 5 V$, $T_A = 25^{\circ}C$, (see note 3)

PARAMETER	FROM	TO		'LS594			'LS599_					
	(INPUT)	(OUTPUT)	TEST CO	MIN	TYP	MAX	MIN	түр	MAX	UNIT		
^t PLH	SHUKT	a _H .	R _L = 1 kΩ,	С _L = 30 pF		12	18		12	18	пs	
^t PHL						15	23		17	25	ns	
^t PLH	RČKT	Q _A thru Q _H	R ₁ = 667 Ω,	C = 45 = 5		12	18		28	42	ns	
^t PHL		NCKI	nexi	GA INIG GH	нL - 667 ж,	C _L = 45 pF		20	30		24	35
^t PHL	SRCLRi		$R_L = 1 k\Omega$,	C _L = 30 pF		22	33		24	35	ns	
tPHL	RCLR	QA thru QH	$R_{L} = 667 \Omega$,	CL = 45 pF	1-	38	57		40	60	rh \$	

NOTE 3: Load circuits and voltage waveforms are shown in Section 1.

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any semiconductor product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

TI warrants performance of its semiconductor products and related software to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

Certain applications using semiconductor products may involve potential risks of death, personal injury, or severe property or environmental damage ("Critical Applications").

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS.

Inclusion of TI products in such applications is understood to be fully at the risk of the customer. Use of TI products in such applications requires the written approval of an appropriate TI officer. Questions concerning potential risk applications should be directed to TI through a local SC sales office.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards should be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or services described herein. Nor does TI warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used.

Copyright © 1996, Texas Instruments Incorporated