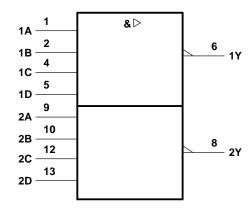
- Buffer Version of 'ALS20B
- Package Options include Plastic Small Outline Packages, Ceramic Chip Carriers, and Standard Plastic and Ceramic 300-mil DIPs
- Dependable Texas Instruments Quality and Reliability

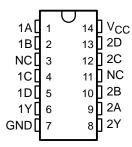
description

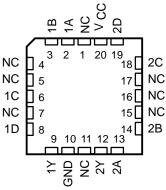

These devices contain two independent 4-input NAND buffers. They perform the Boolean functions $Y = \overline{A \bullet B \bullet C \bullet B}$ or $Y = \overline{A + B + \overline{C} + \overline{D}}$ positive logic.

The SN54ALS1020A is characterized for operation over the full military temperature range of -55°C to 125°C. The SN74ALS1020A is characterized for operation from 0°C to 70°C.

FUNCTION TABLE (each gate)

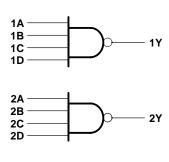
	INP	OUTPUT		
Α	В	С	D	Υ
Н	Н	Н	Н	L
L	Χ	Χ	Χ	Н
Х	L	Χ	Χ	Н
Х	Χ	L	Χ	Н
Х	Χ	Χ	L	Н


logic symbol†


[†] This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

Pin numbers shown are for D, J, and N packages.

SN54ALS1020A . . . J PACKAGE SN74ALS1020A . . . D OR N PACKAGE (TOP VIEW)



SN54ALS1020A . . . FK PACKAGE (TOP VIEW)

NC - No internal connection

logic diagram (positive logic)

SN54ALS1020A, SN74ALS1020A DUAL 4-INPUT POSITIVE-NAND BUFFERS

SDAS 242 - D2661, APRIL 1982 - REVISED MAY 1986

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, V _{CC}		7 V
Input voltage		7 V
Operating free-air temperature range:	SN54ALS1020A	-55°C to 125°C
	SN74ALS1020A	0°C to 70°C
Storage temperature range		−65°C to 150°C

recommended operating conditions

		SN54ALS1020A		SN74ALS1020A			UNIT	
		MIN	NOM	MAX	MIN	NOM	MAX	UNIT
VCC	Supply voltage	4.5	5	5.5	4.5	5	5.5	V
VIH	High-level input voltage	2			2			V
VIL	Low-level input voltage			0.7			0.8	V
IOH	High-level output current			-1			-2.6	mA
lOL	Low-level output current			12			24	mA
TA	Operating free-air temperature	-55		125	0		70	°C

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS		SN54	SN54ALS1020A			SN74ALS1020A		
			MIN	TYP†	MAX	MIN	TYP†	MAX	UNIT
VIK	V _{CC} = 4.5 V,	I _I = -18 mA			-1.5			-1.5	V
	$V_{CC} = 4.5 \text{ V to } 5.5 \text{ V},$	$I_{OH} = -0.4 \text{ mA}$	V _{CC} -2			V _{CC} -2			
V_{OH}	$V_{CC} = 4.5 \text{ V},$	$I_{OH} = -1 \text{ mA}$	2.4	3.3					V
	$V_{CC} = 4.5 \text{ V},$	$I_{OH} = -2.6 \text{ mA}$				2.4	3.3		
VOL	$V_{CC} = 4.5 \text{ V},$	I _{OL} = 12 mA		0.25	0.4		0.25	0.4	V
	V _{CC} = 4.5 V,	I _{OL} = 24 mA					0.35	0.5	V
lį	V _{CC} = 5.5 V,	V _I = 7 V			0.1			0.1	mA
lН	V _{CC} = 5.5 V,	V _I = 2.7 V			20			20	μΑ
I _{IL}	V _{CC} = 5.5 V,	V _I = 0.4 V			-0.1			-0.1	mA
IO [‡]	$V_{CC} = 5.5 \text{ V},$	V _O = 2.25 V	-30		-112	-30	•	-112	mA
ІССН	V _{CC} = 5.5 V,	V _I = 0		0.5	0.8		0.5	0.8	mA
^I CCL	V _{CC} = 5.5 V,	V _I = 4.5 V		2.4	3.9		2.4	3.9	mA

[†] All typical values are at $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$.

switching characteristics (see Note 1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	$V_{CC} = 5 \text{ V},$ $C_L = 50 \text{ pF},$ $R_L = 500 \Omega,$ $T_A = 25^{\circ}\text{C}$ 'ALS1020A TYP	SN54AL MIN	C _L = 50 R _L = 50 T _A = M		[UNIT
^t PLH	Any	Y	5	2	10	2	8	ns
^t PHL			5	2	10	2	7	113

NOTE 1: Load circuit and voltage waveforms are shown in Section 1.

[‡] The output conditions have been chosen to produce a current that closely approximates one half of the true short-circuit output current, los.

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any semiconductor product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

TI warrants performance of its semiconductor products and related software to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

Certain applications using semiconductor products may involve potential risks of death, personal injury, or severe property or environmental damage ("Critical Applications").

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS.

Inclusion of TI products in such applications is understood to be fully at the risk of the customer. Use of TI products in such applications requires the written approval of an appropriate TI officer. Questions concerning potential risk applications should be directed to TI through a local SC sales office.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards should be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or services described herein. Nor does TI warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used.

Copyright © 1996, Texas Instruments Incorporated