SDAS205A - APRIL 1982 - REVISED DECEMBER 1994

- 8-Line to 1-Line Multiplexers Can Perform as:
 - Boolean Function Generators Parallel-to-Serial Converters Data Source Selectors
- Input Clamping Diodes Simplify System Design
- Package Options Include Plastic Small-Outline (D) Packages, Ceramic Chip Carriers (FK), and Standard Plastic (N) and Ceramic (J) 300-mil DIPs

description

These data selectors/multiplexers provide full binary decoding to select one-of-eight data sources. The strobe (\overline{G}) input must be at a low logic level to enable the inputs. A high level at the strobe terminal forces the W output high and the Y output low.

The SN54ALS151 is characterized for operation over the full military temperature range of -55° C to 125°C. The SN74ALS151 and SN74AS151 are characterized for operation from 0°C to 70°C.

SN54ALS151 J PACKAGE SN74ALS151, SN74AS151 D OR N PACKAGE (TOP VIEW)							
D1 [D0 [Y [W [G [1 2 3 4 5 6 7 8	16 15 14 13 12 11 10 9	V _{CC} D4 D5 D6 D7 A B C				

SN54ALS151 . . . FK PACKAGE (TOP VIEW)

NC - No internal connection

_									
		INF		OUTPUTS					
		SELECT		STROBE	001	-013			
	С	В	Α	G	Y	w			
Γ	Х	Х	Х	Н	L	Н			
	L	L	L	L	D0	D0			
	L	L	Н	L	D1	D1			
	L	н	L	L	D2	D2			
	L	н	Н	L	D3	D3			
	н	L	L	L	D4	D4			
	н	L	Н	L	D5	D5			
	н	н	L	L	D6	D6			
	Н	н	н	L	D7	D7			

FUNCTION TABLE

H = high level, L = low level, X = irrelevant

D0, D1, . . . D7 = the level of the respective D input

SDAS205A - APRIL 1982 - REVISED DECEMBER 1994

logic symbol[†]

[†] This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12. Pin numbers shown are for the D, J, and N packages.

logic diagram (positive logic)

Pin numbers shown are for the D, J, and N packages.

SDAS205A - APRIL 1982 - REVISED DECEMBER 1994

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)[†]

Supply voltage, V _{CC}	
Operating free-air temperature range, T _A : SN54ALS151	–55°C to 125°C
SN74ALS151	0°C to 70°C
Storage temperature range	−65°C to 150°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

recommended operating conditions

		SN	54ALS1	51	SN74ALS151			UNIT	
		MIN	NOM	MAX	MIN	NOM	MAX	UNIT	
VCC	Supply voltage	4.5	5	5.5	4.5	5	5.5	V	
VIH	High-level input voltage	2			2			V	
VIL	Low-level input voltage			0.7			0.8	V	
IOH	High-level output current			-1			-2.6	mA	
IOL	Low-level output current			12			24	mA	
TA	Operating free-air temperature	-55		125	0		70	°C	

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS		SN	54ALS1	51	SN	74ALS1	51	UNIT
PARAMETER	TEST CO	TEST CONDITIONS		TYP‡	MAX	MIN	түр‡	MAX	UNIT
VIK	V _{CC} = 4.5 V,	lj = -18 mA			-1.5			-1.5	V
	V_{CC} = 4.5 V to 5.5 V,	I _{OH} = -0.4 mA	V _{CC} -2	2		V _{CC} -2	2		
VOH	H V _{CC} = 4.5 V	I _{OH} = –1 mA	2.4	3.3					V
		I _{OH} = -2.6 mA				2.4	3.2		
	V _{CC} = 4.5 V	I _{OL} = 12 mA		0.25	0.4		0.25	0.4	v
VOL		I _{OL} = 24 mA					0.35	0.5	v
lj	V _{CC} = 5.5 V,	V _I = 7 V			0.1			0.1	mA
IН	V _{CC} = 5.5 V,	V _I = 2.7 V			20			20	μA
١ _{IL}	V _{CC} = 5.5 V,	V _I = 0.4 V			-0.1			-0.1	mA
١ _O §	V _{CC} = 5.5 V,	V _O = 2.25 V	-20		-112	-30		-112	mA
ICC	V _{CC} = 5.5 V,	Inputs at 4.5 V		7.5	12		7.5	12	mA

[‡] All typical values are at V_{CC} = 5 V, T_A = 25°C.

§ The output conditions have been chosen to produce a current that closely approximates one half of the true short-circuit output current, IOS.

SDAS205A - APRIL 1982 - REVISED DECEMBER 1994

switching characteristics (see Figure 1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	V _{CC} = 4.5 V to 5.5 V, C _L = 50 pF, R _L = 500 Ω, T _A = MIN to MAX [†]				UNIT
			SN54A	LS151	SN74A	LS151	
			MIN	MAX	MIN	MAX	
^t PLH	A, B, or C	Y	4	21	4	18	ns
^t PHL	A, B, OI C		7	35	8	24	115
^t PLH	A, B, or C	W	5	36	7	24	ns
^t PHL	A, B, 01 C	VV	7	26	7	23	115
^t PLH	Amy D	Y	3	14	3	10	ns
^t PHL	Any D	Ι	5	21	5	15	115
^t PLH	1 m P	W	3	23	3	15	ns
^t PHL	Any D	VV	4	20	4	15	115
^t PLH	G	Y	4	21	4	18	ns
^t PHL	9	Ť	4	25	4	19	115
^t PLH	G	W	5	27	5	19	ns
^t PHL	3	vv	5	26	5	23	115

[†] For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)[‡]

Supply voltage, V _{CC}	
Input voltage, V _I	
Operating free-air temperature range, T _A : SN74AS151	0°C to 70°C
Storage temperature range	−65°C to 150°C

[‡] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

recommended operating conditions

		SN	174AS15	51	UNIT
		SN74AS15 MIN NOM 4.5 5 2 - 0 -	MAX	UNIT	
VCC	Supply voltage	4.5	5	5.5	V
VIH	High-level input voltage	2			V
V_{IL}	Low-level input voltage			0.8	V
IOH	High-level output current			-15	mA
IOL	Low-level output current			48	mA
TA	Operating free-air temperature	0		70	°C

SDAS205A - APRIL 1982 - REVISED DECEMBER 1994

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

			SN	SN74AS151		
PARAMETER	TEST CONL	JIIIONS	MIN	· · · · · · · · · · · · · · · · · · ·	UNIT	
	V _{CC} = 4.5 V,	lj = – 18 mA			-1.2	V
	$V_{CC} = 4.5 V \text{ to } 5.5 V,$	I _{OH} = -2 mA	V _{CC} -2			V
V_{OH} $V_{CC} = 4.5 \text{ V},$		I _{OH} = – 15 mA	2.4	3.2		v
	V _{CC} = 4.5 V,	I _{OL} = 48 mA		0.35	0.5	V
A, B, or C		V ₁ = 7 V			0.2	2
All others	VCC = 5.5 V,				0.1	mA
A, B, or C					40	
All others	VCC = 5.5 V,	$V_{1} = 2.9^{\circ} V$			20	μA
A, B, or C					-1	4
All others	VCC = 5.5 V,	V] = 0:4 V			-0.5	mA
	V _{CC} = 5.5 V,	V _O = 2.25 V	-30		-112	mA
	V _{CC} = 5.5 V			18.6	30	mA
	All others A, B, or C All others A, B, or C	$V_{CC} = 4.5 V,$ $V_{CC} = 4.5 V, to 5.5 V,$ $V_{CC} = 4.5 V, to 5.5 V,$ $V_{CC} = 4.5 V,$ $V_{CC} = 4.5 V,$ $V_{CC} = 4.5 V,$ $V_{CC} = 5.5 V,$ All others $V_{CC} = 5.5 V,$ All others $V_{CC} = 5.5 V,$ $V_{CC} = 5.5 V,$ $V_{CC} = 5.5 V,$ $V_{CC} = 5.5 V,$	$ \begin{array}{c c} V_{CC} = 4.5 \text{ V}, & I_{I} = -18 \text{ mA} \\ \hline V_{CC} = 4.5 \text{ V} \text{ to } 5.5 \text{ V}, & I_{OH} = -2 \text{ mA} \\ \hline V_{CC} = 4.5 \text{ V}, & I_{OH} = -15 \text{ mA} \\ \hline V_{CC} = 4.5 \text{ V}, & I_{OH} = -15 \text{ mA} \\ \hline V_{CC} = 4.5 \text{ V}, & I_{OL} = 48 \text{ mA} \\ \hline A, B, \text{ or } C \\ \hline All \text{ others} \\ \hline A, B, \text{ or } C \\ \hline All \text{ others} \\ \hline A, B, \text{ or } C \\ \hline All \text{ others} \\ \hline V_{CC} = 5.5 \text{ V}, & V_{I} = 7 \text{ V} \\ \hline All \text{ others} \\ \hline V_{CC} = 5.5 \text{ V}, & V_{I} = 27 \text{ V} \\ \hline All \text{ others} \\ \hline V_{CC} = 5.5 \text{ V}, & V_{I} = 27 \text{ V} \\ \hline All \text{ others} \\ \hline V_{CC} = 5.5 \text{ V}, & V_{I} = 27 \text{ V} \\ \hline V_{CC} = 5.5 \text{ V}, & V_{I} = 27 \text{ V} \\ \hline \end{array} $	PARAMETER TEST CONDITIONS MIN VCC = 4.5 V, 1 ₁ = -18 mA VCC = 4.5 V, 05.5 V, 1 _{OH} = -2 mA V _{CC} -2 V _{CC} = 4.5 V, 05.5 V, 1 _{OH} = -2 mA V _{CC} -2 V _{CC} = 4.5 V, 1 _{OH} = -15 mA 2.4 V _{CC} = 4.5 V, 1 _{OL} = 48 mA V _{CC} = 4.5 V, 1 _{OL} = 48 mA A, B, or C V _{CC} = 5.5 V, V ₁ = 7 V All others V _{CC} = 5.5 V, V ₁ = 7 V A, B, or C V _{CC} = 5.5 V, V ₁ = 2?Y' v A, B, or C V _{CC} = 5.5 V, V ₁ = 2?Y' v All others V _{CC} = 5.5 V, V ₁ = -10*Y' v All others V _{CC} = 5.5 V, V ₀ = 2.25 V	PARAMETER TEST CONDITIONS MIN TYP† $V_{CC} = 4.5 V,$ $I_I = -18 \text{ mA}$ $V_{CC} -2$ $V_{CC} = 4.5 V, to 5.5 V,$ $I_{OH} = -2 \text{ mA}$ $V_{CC} -2$ $V_{CC} = 4.5 V,$ $I_{OH} = -15 \text{ mA}$ 2.4 3.2 $V_{CC} = 4.5 V,$ $I_{OH} = -15 \text{ mA}$ 2.4 3.2 $V_{CC} = 4.5 V,$ $I_{OL} = 48 \text{ mA}$ 0.35 $A, B, \text{ or } C$ $V_{CC} = 5.5 V,$ $V_I = 7 V$ $V_{CC} = 5.5 V,$ $A, B, \text{ or } C$ $V_{CC} = 5.5 V,$ $V_I = 27 Y' V$ $V_{CC} = 5.5 V,$ $A, B, \text{ or } C$ $V_{CC} = 5.5 V,$ $V_I = 27 Y' V$ $V_{CC} = 5.5 V,$ $A, B, \text{ or } C$ $V_{CC} = 5.5 V,$ $V_I = 27 Y' V$ $V_{CC} = 5.5 V,$ $A, B, \text{ or } C$ $V_{CC} = 5.5 V,$ $V_I = 27 Y' V$ $V_{CC} = 5.5 V,$ $A, B, \text{ or } C$ $V_{CC} = 5.5 V,$ $V_I = 27 Y V$ $V_{CC} = 5.5 V V_{CC} = 5.5$	PARAMETER TEST CONDITIONS MIN TYP† MAX V_CC = 4.5 V, I = -18 mA -1.2 V_CC = 4.5 V, I = -18 mA V_CC -2 V_CC = 4.5 V, I OH = -2 mA V_CC -2 V_CC = 4.5 V, I OH = -15 mA 2.4 3.2 V_CC = 4.5 V, I OH = -15 mA 0.35 0.5 V_CC = 4.5 V, I OL = 48 mA 0.35 0.5 A, B, or C VCC = 5.5 V, VI = 7 V 0.1 A, B, or C VCC = 5.5 V, VI = 27 Y v 40 All others VCC = 5.5 V, VI = 27 Y v -0.1 A, B, or C VCC = 5.5 V, VI = 27 Y v -0.1 All others VCC = 5.5 V, VI = 27 Y v -0.1 All others VCC = 5.5 V, VI = 27 Y v -0.5 VCC = 5.5 V, VI = 27 Y v -0.5 VCC = 5.5 V, VI = 27 Y v -0.5

[†] All typical values are at V_{CC} = 5 V, T_A = 25°C. [‡] The output conditions have been chosen to produce a current that closely approximates one half of the true short-circuit output current, I_{OS}.

switching characteristics (see Figure 1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	V _{CC} = 4.5 C _L = 50 p R _L = 500 T _A = MIN	UNIT	
				AS151	
			MIN	MAX	
tPLH	A, B, or C	Y	4.5	14.5	ns
^t PHL	7, 5, 6, 6	ľ	4.5	15	115
^t PLH	A, B, or C	W	4	12	ns
^t PHL	A, B, or C	••	4	12	115
^t PLH		Y	3	10.5	
^t PHL	Any D	Ť	3	11	ns
^t PLH	4	W	2	6.5	ns
^t PHL	Any D	vv	1	4.5	115
^t PLH	G	Y	4.5	14	ns
^t PHL	G	1	3	11	115
^t PLH	G	W	1.5	6	ns
^t PHL	6	vv	3	10	115

§ For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

SDAS205A - APRIL 1982 - REVISED DECEMBER 1994

NOTES: A. CL includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- C. When measuring propagation delay items of 3-state outputs, switch S1 is open.
- D. All input pulses have the following characteristics: PRR \leq 1 MHz, t_{f} = t_{f} = 2 ns, duty cycle = 50%.
- E. The outputs are measured one at a time with one transition per measurement.

Figure 1. Load Circuits and Voltage Waveforms

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any semiconductor product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

TI warrants performance of its semiconductor products and related software to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

Certain applications using semiconductor products may involve potential risks of death, personal injury, or severe property or environmental damage ("Critical Applications").

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS.

Inclusion of TI products in such applications is understood to be fully at the risk of the customer. Use of TI products in such applications requires the written approval of an appropriate TI officer. Questions concerning potential risk applications should be directed to TI through a local SC sales office.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards should be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or services described herein. Nor does TI warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used.

Copyright © 1996, Texas Instruments Incorporated