SN54ALS114A, SN74ALS114A DUAL J-K NEGATIVE-EDGE-TRIGGERED FLIP-FLOPS WITH PRESET,COMMON CLEAR,AND COMMON CLOCK SDAS201 – D2661, DECEMBER 1982 – REVISED MAY 1986

- Fully Buffered to Offer Maximum isolation from External Disturbance
- Package Options include Plastic Small Outline Packages, Ceramic Chip Carriers, and Standard Plastic and Ceramic 300-mil DIPs
- Typical Maximum Clock Frequency 30 MHz
- Typical Power Dissipation per Flip-Flop 6 mW
- Dependable Texas Instruments Quality and Reliability

description

These devices contain two independent J-K negative-edge-triggered flip-flops. A low level at the Preset or Clear inputs sets or resets the outputs regardless of the levels of the other inputs. When Preset and Clear are inactive (high), data at the J and K inputs meeting the setup time requirements are transferred to the outputs on the negative-going edge of the clock pulse. Clock triggering occurs at a voltage level and is not directly related to the fall time of the clock pulse. Following the hold time interval, data at the J and K inputs may be changed without affecting the levels at the outputs. These versatile flip-flops can perform as toggle flip-flops by tying J and K high.

The SN54ALS114A is characterized for operation over the full military temperature range of -55° C to 125°C. The SN74ALS114A is characterized for operation from 0°C to 70°C.

FUNCTION TABLE INPUTS OUTPUTS PRE CI R CLK .1 κ Q Q Н Х Х Н Х L 1 Н L Х Х Х L Н H[†] н† L L Х Х Х $\overline{\mathsf{Q}}_0$ ↓ Н н L Q_0 L \downarrow Н Н н L н L \downarrow Н н н н L L ↓ TOGGLE Н н н Н Qn Н н Н Х х Q₀

[†] The output levels in this configuration are not guaranteed to meet the minimum levels for V_{OH} if the lows at Preset and Clear are near V_{IL} maximum. Furthermore, this configuration is nonstable; that is, it will not persist when either Preset or Clear returns to its inactive (high) level.

NC-No internal connection

logic symbol[‡]

[‡] This symbol is in accordance with ANSI/IEEE Std 911-1984 and IEC Publication 617-12.

Pin numbers are for D, J, and N packages.

PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.

1

SN54ALS114A, SN74ALS114A DUAL J-K NEGATIVE-EDGE-TRIGGERED FLIP-FLOPS WITH PRESET,COMMON CLEAR,AND COMMON CLOCK SDAS201 – D2661, DECEMBER 1982 – REVISED MAY 1986

. . .. /

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, V _{CC} Input voltage	
Operating free-air temperature range: SN54ALS114A	−55°C to 125°C
SN74ALS114A	0°C to 70°C
Storage temperature range	–65°C to 150°C

recommended operating conditions

			SN	SN54ALS114A		SN74ALS114A			UNIT	
			MIN	NOM	MAX	MIN	NOM	MAX		
Vcc	Supply voltage			5	5.5	4.5	5	5.5	V	
VIH	High-level input voltage		2			2			V	
VIL	Low-level input voltage				0.7			0.8	V	
ЮН	High-level output current				-0.4			-0.4	mA	
IOL	Low-level output current				4			8	mA	
fclock	Clock frequency				25	0		30	mHz	
	Pulse duration	PRE or CLR low	20			10			ns	
tw		CLK high	20			16.5				
		CLK low	20			16.5				
t _{su}	Setup time before $CLK\downarrow$	Data	25			22			ns	
		PRE or CLR inactive	25			20				
t _h	Hold time, data after CLK↓		0			0			ns	
ТА	Operating free-air temperature		-55		125	0		70	°C	

SN54ALS114A, SN74ALS114A **DUAL J-K NEGATIVE-EDGE-TRIGGERED FLIP-FLOPS** WITH PRESET, COMMON CLEAR, AND COMMON CLOCK SDAS201 – D2661, DECEMBER 1982 – REVISED MAY 1986

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER		TEST CONDITIONS		SN5	SN54ALS114A			SN74ALS114A			
				MIN	TYP†	MAX	MIN	TYP†	MAX	UNIT	
VIK		V _{CC} = 4.5 V,	lj = –18 mA			-1.5			-1.5	V	
VOH		V_{CC} = 4.5 V to 5.5 V,	I _{OH} = -0.4 mA	V _{CC} -2			V _{CC} -2			V	
VOL		V _{CC} = 4.5 V,	I _{OL} = 4 mA		0.25	0.4					
		V _{CC} = 4.5 V,	I _{OL} = 8 mA					0.35	0.5	V	
1.	J, K, or CLK	V _{CC} = 5.5 V,	V _I = 7 V			0.1			0.1	mA	
lı	PRE or CLR					0.2			0.2		
1	J, K, or CLK	V _{CC} = 5.5 V,	V _I = 2.7 V			20			20	A	
ЧΗ	PRE or CLR					40			40	μΑ	
١	J, K, or CLK	V _{CC} = 5.5 V,	VI = 0.4 V			-0.2			-0.2	mA	
	PRE or CLR					-0.4			-0.4	ША	
10‡	-	V _{CC} = 5.5 V,	V _O = 2.25 V	-30		-112	-30		-112	mA	
ICC		V _{CC} = 5.5 V,	See Note 1		2.5	4.5		2.5	4.5	mA	

[†] All typical values are at $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$. [‡] The output conditions have been chosen to produce a current that closely approximates one half of the true short-circuit output current, IOS. NOTE 1: I_{CC} is measured with J, K, CLK, and PRE grounded, then with J, K, CLK, and CLR grounded.

switching characteristics (see Note 2)

PARAMETER	FROM (INPUT)	TO (OUTPUT)		UNIT			
			SN54ALS114A		SN74ALS114A		
		MIN	MAX	MIN	MAX		
f _{max}			25		30		MHz
^t PLH	PRE or CLR	Q or \overline{Q}	3	29	3	15	ns
^t PHL			4	30	4	18	
^t PLH	CLK	Q or Q	3	28	3	15	ns
^t PHL	ÖEK		5	31	5	19	113

NOTE 2: Load circuit and Voltage waveforms are shown in Section 1.

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any semiconductor product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

TI warrants performance of its semiconductor products and related software to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

Certain applications using semiconductor products may involve potential risks of death, personal injury, or severe property or environmental damage ("Critical Applications").

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS.

Inclusion of TI products in such applications is understood to be fully at the risk of the customer. Use of TI products in such applications requires the written approval of an appropriate TI officer. Questions concerning potential risk applications should be directed to TI through a local SC sales office.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards should be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or services described herein. Nor does TI warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used.

Copyright © 1996, Texas Instruments Incorporated