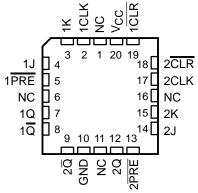
SDAS199A - APRIL 1982 - REVISED DECEMBER 1994

- Fully Buffered to Offer Maximum Isolation From External Disturbance
- Package Options Include Plastic Small-Outline (D) Packages, Ceramic Chip Carriers (FK), and Standard Plastic (N) and Ceramic (J) 300-mil DIPs

TYPE	TYPICAL MAXIMUM CLOCK FREQUENCY (MHz)	TYPICAL POWER DISSIPATION PER FLIP-FLOP (mW)
'ALS112A	50	6


description

These devices contain two independent J-K negative-edge-triggered flip-flops. A low level at the preset (PRE) or clear (\overline{CLR}) inputs sets or resets the outputs, regardless of the levels of the other inputs. When \overline{PRE} and \overline{CLR} are inactive (high), data at the J and K inputs meeting the setup-time requirements is transferred to the outputs on the negative-going edge of the clock pulse (CLK). Clock triggering occurs at a voltage level and is not directly related to the fall time of the clock pulse. Following the hold-time interval, data at the J and K inputs may be changed without affecting the levels at the outputs. These versatile flip-flops can perform as toggle flip-flops by tying J and K high.

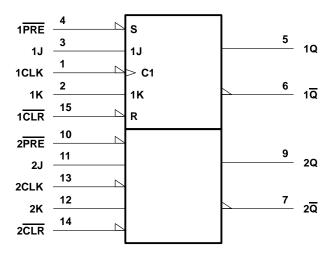
SN74ALS112A ... D OR N PACKAGE (TOP VIEW) 1CLK 16 🛛 V_{CC} 1K 🛛 15 1 1 CLR 2 1J 🛛 14 2 2 CLR 3 1PRE 13 2CLK 4 1Q 🛛 5 12 2K 1Q [6 2J 11 2Q 7 10 2PRE GND 8 9 2Q

SN54ALS112A ... J PACKAGE

SN54ALS112A . . . FK PACKAGE (TOP VIEW)

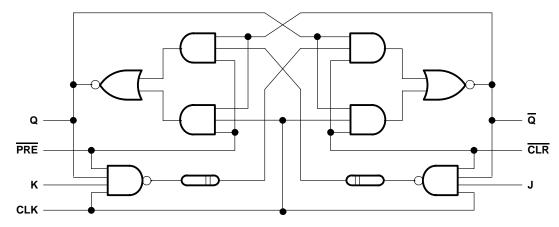
NC - No internal connection

The SN54ALS112A is characterized for operation over the full military temperature range of -55° C to 125° C. The SN74ALS112A is characterized for operation from 0°C to 70°C.


	FUNCTION TABLE (each flip-flop)								
		INPUTS			OUTI	PUTS			
PRE	CLR	CLK	J	к	Q	Q			
L	Н	Х	Х	Х	Н	L			
н	L	Х	Х	Х	L	н			
L	L	х	Х	х	н†	H‡			
н	Н	\downarrow	L	L	Q ₀	\overline{Q}_0			
н	Н	\downarrow	н	L	н	L			
н	Н	\downarrow	L	н	L	н			
н	Н	\downarrow	н	Н	Toggle				
н	Н	Н	Х	Х	Q ₀	\overline{Q}_0			

[†] The output levels in this configuration may not meet the minimum levels for V_{OH}. Furthermore, this configuration is nonstable; that is, it does not persist when either PRE or CLR returns to its inactive (high) level.

PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.


SDAS199A - APRIL 1982 - REVISED DECEMBER 1994

logic symbol[†]

[†] This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12. Pin numbers shown are for the D, J, and N packages.

logic diagram (positive logic)

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)[‡]

Supply voltage, V _{CC}	
Operating free-air temperature range, T _A : SN54ALS112A	–55°C to 125°C
SN74ALS112A	0°C to 70°C
Storage temperature range	-65°C to 150°C

[‡] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

SDAS199A - APRIL 1982 - REVISED DECEMBER 1994

recommended operating conditions

			SN	54ALS11	2A	SN7	SN74ALS112A		UNIT
			MIN	NOM	MAX	MIN	NOM	MAX	UNIT
VCC	Supply voltage		4.5	5	5.5	4.5	5	5.5	V
VIH	High-level input voltage		2			2			V
VIL	Low-level input voltage				0.7			0.8	V
IOH	High-level output current				-0.4			-0.4	mA
IOL	Low-level output current				4			8	mA
fclock	Clock frequency		0		25	0		30	MHz
		PRE or CLR low	15			10			
tw	Pulse duration	CLK high	20			16.5			ns
		CLK low	20			16.5			
+	Onternational Instance Object	Data	25			22			ns
t _{su}	Setup time before $CLK\!\!\downarrow$	PRE or CLR inactive	22			20			115
t _h	Hold time after $CLK{\downarrow}$	Data	0			0			ns
TA	Operating free-air temperature		-55		125	0		70	°C

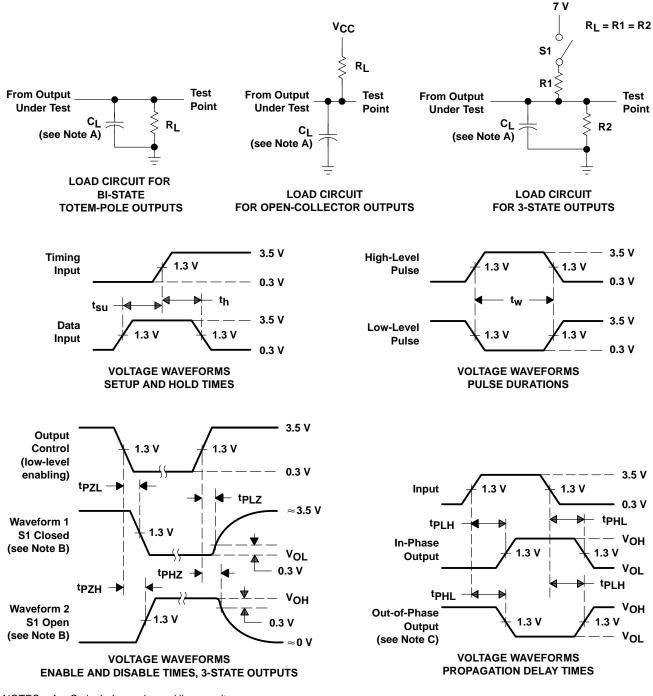
electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER		TEST CONDITIONS		SN5	SN54ALS112A			SN74ALS112A			
		IESI CO	JNDITIONS	MIN	ΜΙΝ ΤΥΡ [†] ΜΑΧ		MIN	TYP†	MAX	UNIT	
VIK		V _{CC} = 4.5 V,	lj = -18 mA			-1.5			-1.5	V	
VOH		V_{CC} = 4.5 V to 5.5 V,	$I_{OH} = -0.4 \text{ mA}$	V _{CC} -2			V _{CC} -2			V	
Vei			I _{OL} = 4 mA		0.25	0.4		0.25	0.4	v	
VOL		$V_{CC} = 4.5 V$	I _{OL} = 8 mA					0.35	0.5	v	
	J, K, or CLK	J, K, or CLK	VI = 7 V			0.1			0.1	mA	
1	PRE or CLR	V _{CC} = 5.5 V,	v = r v			0.2			0.2	mA	
1	J, K, or CLK		\/. ⊖ ₹\/			20			20	A	
lн	PRE or CLR	V _{CC} = 5.5 V,	V _I =2			40			40	μA	
1	J, K, or CLK					-0.2			-0.2		
۱Ľ	$\frac{1}{\text{PRE or CLR}} V_{\text{CC}} = 5.5 \text{ V},$		V∣ =℃!4′ v			-0.4			-0.4	mA	
10‡	-	V _{CC} = 5.5 V,	V _O = 2.25 V	-20		-112	-30		-112	mA	
ICC		V _{CC} = 5.5 V,	See Note 1		2.5	4.5		2.5	4.5	mA	

[†] All typical values are at V_{CC} = 5 V, T_A = 25°C. [‡] The output conditions have been chosen to produce a current that closely approximates one half of the true short-circuit output current, I_{OS}. NOTE 1: I_{CC} is measured with J, K, CLK, and PRE grounded, then with J, K, CLK, and CLR grounded.

SDAS199A - APRIL 1982 - REVISED DECEMBER 1994

switching characteristics (see Figure 1)


PARAMETER	FROM (INPUT)	TO (OUTPUT)	CL = 50 pF, RI = 500 Ω,		,		V _{CC} = 4.5 V to 5.5 V, C _L = 50 pF, R _L = 500 Ω, T _A = MIN to MAX [†]		UNIT
			SN54AL						
			MIN	MAX	MIN	MAX			
^f max			25		30		MHz		
^t PLH	PRE or CLR	Q or \overline{Q}	3	26	3	15	ns		
^t PHL	PRE OF CLR	QorQ	4	23	4	18	115		
^t PLH	CLK	Q or Q	3	23	3	15	ns		
^t PHL			5	24	5	19	115		

[†] For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

SDAS199A – APRIL 1982 – REVISED DECEMBER 1994

PARAMETER MEASUREMENT INFORMATION SERIES 54ALS/74ALS AND 54AS/74AS DEVICES

NOTES: A. CL includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
 C. When measuring propagation delay items of 3-state outputs, switch S1 is open.
- D. All input pulses have the following characteristics: PRR \leq 1 MHz, t_r = t_f = 2 ns, duty cycle = 50%.
- E. The outputs are measured one at a time with one transition per measurement.

Figure 1. Load Circuits and Voltage Waveforms

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any semiconductor product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

TI warrants performance of its semiconductor products and related software to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

Certain applications using semiconductor products may involve potential risks of death, personal injury, or severe property or environmental damage ("Critical Applications").

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS.

Inclusion of TI products in such applications is understood to be fully at the risk of the customer. Use of TI products in such applications requires the written approval of an appropriate TI officer. Questions concerning potential risk applications should be directed to TI through a local SC sales office.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards should be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or services described herein. Nor does TI warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used.

Copyright © 1996, Texas Instruments Incorporated