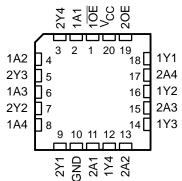
SDAS153E - DECEMBER 1982 - REVISED AUGUST 1995

- 3-State Outputs Drive Bus Lines or Buffer Memory Address Registers
- pnp Inputs Reduce dc Loading
- Package Options Include Plastic Small-Outline (DW) Packages, Ceramic Chip Carriers (FK), and Standard Plastic (N) and Ceramic (J) 300-mil DIPs

description

These octal buffers/drivers are designed specifically to improve the performance and density of 3-state memory address drivers, clock drivers, and bus-oriented receivers and transmitters. The designer has a choice of selected combinations of inverting and noninverting outputs, symmetrical active-low output-enable (OE) inputs, and complementary OE and OE inputs. These devices feature high fan-out and improved fan-in.

The -1 version of SN74ALS241C is identical to the standard version, except that the recommended maximum I_{OL} of the -1 version is 48 mA. There is no -1 version of the SN54ALS241C.

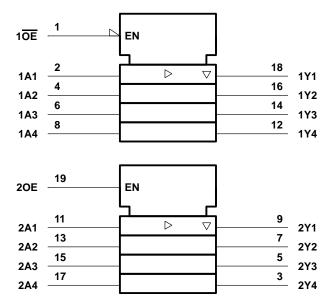

The SN54ALS241C and SN54AS241A are characterized for operation over the full military temperature range of -55° C to 125° C. The SN74ALS241C and SN74AS241A are characterized for operation from 0°C to 70°C.

SN54ALS241C, SN54AS241A J PACKAGE
SN74ALS241C, SN74AS241A DW OR N PACKAGE
(TOP VIEW)

	(,	
1 <mark>OE</mark>		U	Vcc
1A1	2	19	20E
2Y4	-	18] 1Y1
1A2	_	17] 2A4
2Y3	_	16] 1Y2
1A3		15] 2A3
2Y2	[7	14] 1Y3
1A4	8]	13] 2A2
2Y1	9	12] 1Y4
GND	[10	11] 2A1

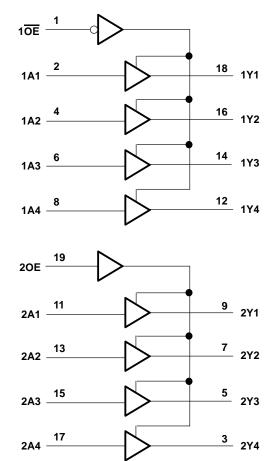
SN54ALS241C, SN54AS241A . . . FK PACKAGE

(TOP VIEW)



FUNCTION TABLES								
INPU	JTS	OUTPUT						
1 <mark>0E</mark>	1A	1Y						
L	Н	Н						
L	L	L						
Н	Х	Z						

INP	JTS	OUTPUT
20E	2A	2Y
н	Н	Н
н	L	L
L	Х	Z


SDAS153E - DECEMBER 1982 - REVISED AUGUST 1995

logic symbol[†]

[†] This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

logic diagram (positive logic)

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)[‡]

Supply voltage, V _{CC}	
Input voltage, VI	7 V
Voltage applied to a disabled 3-state output	
Operating free-air temperature range, T _A : SN54ALS241C	-55°C to 125°C
SN74ALS241C	0°C to 70°C
Storage temperature range	–65°C to 150°C

‡ Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

SDAS153E - DECEMBER 1982 - REVISED AUGUST 1995

recommended operating conditions

		SN54ALS241C		SN7	UNIT				
		MIN	NOM	MAX	MIN	NOM	MAX	UNIT	
V _{CC}	Supply voltage	4.5	5	5.5	4.5	5	5.5	V	
VIH	High-level input voltage	2			2			V	
VIL	Low-level input voltage			0.7			0.8	V	
ЮН	High-level output current			-12			-15	mA	
		1:		12			24	mA	
IOL	Low-level output current						48†		
TA	Operating free-air temperature	-55		125	0		70	°C	

[†] Applies only to the -1 version and only if V_{CC} is between 4.75 V and 5.25 V

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

	тге		SN	SN54ALS241C		SN74ALS241C			UNIT
PARAMETER	IESI			TYP‡	MAX	MIN	TYP‡	MAX	UNIT
VIK	V _{CC} = 4.5 V,	lj = – 18 mA			-1.2			-1.2	V
	V _{CC} = 4.5 V to 5.5 V	, $I_{OH} = -0.4 \text{ mA}$	V _{CC} -2	2		V _{CC} -2	2		
Vou		$I_{OH} = -3 \text{ mA}$	2.4	3.2		2.4	3.2		v
VOH	$V_{CC} = 4.5 V$	$I_{OH} = -12 \text{ mA}$	2						v
		I _{OH} = – 15 mA				2			
		I _{OL} = 12 mA		0.25	0.4		0.25	0.4	
VOL	V _{CC} = 4.5 V	I _{OL} = 24 mA					0.35	0.5	V
		I _{OL} = 48 mA (-1 version)					0.35	0.5	
IOZH	V _{CC} = 5.5 V,	V _O = 2.7 V			20			20	μΑ
IOZL	$V_{CC} = 5.5 V,$	V _O = 0.4 V			-20			-20	μΑ
lj	V _{CC} = 5.5 V,	V _I = 7 V			0.1			0.1	mA
IН	V _{CC} = 5.5 V,	V _I = 2.7 V			20			20	μΑ
١ _{IL}	V _{CC} = 5.5 V,	VI = 0.4 V			-0.1			-0.1	mA
۱ ₀ §	V _{CC} = 5.5 V,	V _O = 2.25 V	-20		-112	-30		-112	mA
		Outputs high		9	17		9	18	
ICC	V _{CC} = 5.5 V	Outputs low		15	28		15	26	mA
		Outputs disabled		17	32		17	30	

[‡] All typical values are at $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$.

§ The output conditions have been chosen to produce a current that closely approximates one half of the true short-circuit output current, IOS.

SDAS153E - DECEMBER 1982 - REVISED AUGUST 1995

switching characteristics (see Figure 1)

PARAMETER	FROM (INPUT)	$\label{eq:constraint} \begin{array}{c} V_{CC} = 4.5 \ V \ to \ 5.5 \ V, \\ C_L = 50 \ pF, \\ R1 = 500 \ \Omega, \\ (OUTPUT) \\ \end{array} \\ \begin{array}{c} TO \\ T_A = MIN \ to \ MAX^{\dagger} \end{array}$				3	UNIT
			SN54AL	S241C	SN74AL	S241C	
			MIN	MAX	MIN	MAX	
^t PLH	A	V	3	31	2	11	ns
^t PHL		Y	1	17	3	10	12
^t PZH	1 0E	Y	3	33	3	21	ns
^t PZL	10E	Ŷ	3	27	4	21	115
^t PHZ	1 0E	V	2	17	1	10	
^t PLZ	10E	Y	2	32	2	15	ns
^t PZH	005		3	38	4	21	
^t PZL	20E	Y	3	30	5	21	ns
^t PHZ	20E	Y	2	17	2	10	ns
^t PLZ	20E	T	3	35	3	15	115

[†] For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted) ‡

Supply voltage, V _{CC}	
Input voltage, V ₁	
Voltage applied to a disabled 3-state output	5.5 V
Operating free-air temperature range, T _A : SN54AS241A	-55°C to 125°C
SN74AS241A	0°C to 70°C
Storage temperature range	-65°C to 150°C

[‡] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

recommended operating conditions

		SN54AS241A		IA	SN	UNIT		
		MIN	NOM	MAX	MIN	NOM	MAX	UNIT
V _{CC}	Supply voltage	4.5	5	5.5	4.5	5	5.5	V
VIH	High-level input voltage	2			2			V
VIL	Low-level input voltage			0.8			0.8	V
ЮН	High-level output current			-12			-15	mA
IOL	Low-level output current			48			64	mA
TA	Operating free-air temperature	-55		125	0		70	°C

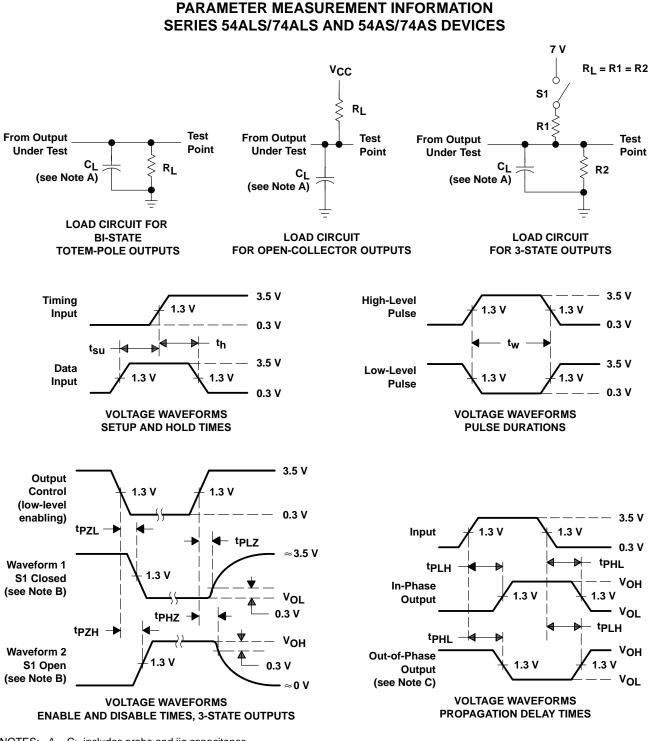
SDAS153E - DECEMBER 1982 - REVISED AUGUST 1995

	TEAT O		SN54AS241A		1A	SN	74AS24 ⁻	1A	UNIT	
PARAMETER	TESTO	ONDITIONS	MIN	ΜΙΝ ΤΥΡ [†] ΜΑΧ		MIN	TYP†	MAX	X	
VIK	V _{CC} = 4.5 V,	lj = -18 mA			-1.2			-1.2	V	
	V_{CC} = 4.5 V to 5.5 V,	$I_{OH} = -2 \text{ mA}$	V _{CC} -2	2		V _{CC} -2	2			
		I _{OH} = -3 mA	2.4	3.4		2.4	3.4		v	
VOH	$V_{CC} = 4.5 V$	I _{OH} = -12 mA	2.4						v	
		I _{OH} = -15 mA				2.4				
		I _{OL} = 48 mA		0.27	0.55				5 V	
VOL	$V_{CC} = 4.5 V$	I _{OL} = 64 mA					0.31	0.55		
IOZH	V _{CC} = 5.5 V,	V _O = 2.7 V			50			50	μA	
IOZL	V _{CC} = 5.5 V,	V _O = 0.4 V			-50			-50	μA	
lj	V _{CC} = 5.5 V,	V _I = 7 V			0.1			0.1	mA	
Чн	V _{CC} = 5.5 V,	V _I = 2.7 V			20			20	μA	
ΙL	V _{CC} = 5.5 V,	V _I = 0.4 V			-1			-1	mA	
۱ ₀ ‡	V _{CC} = 5.5 V,	V _O = 2.25 V	-50		-150	-50		-150	mA	
		Outputs high		22	35		22	35		
ICC	V _{CC} = 5.5 V	Outputs low		61	90		61	90	mA	
		Outputs disabled		35	56		35	56		

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

[†] All typical values are at $V_{CC} = 5 V$, $T_A = 25^{\circ}C$.

[‡] The output conditions have been chosen to produce a current that closely approximates one half of the true short-circuit output current, IOS.


switching characteristics (see Figure 1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	F F	V _{CC} = 4.5 V to 5.5 V, C _L = 50 pF, R1 = 500 Ω, R2 = 500 Ω, T _A = MIN to MAX§			UNIT
			SN54A		SN74A		
			MIN	MAX	MIN	MAX	
^t PLH	А	Y	2	9	2	6.2	ns
^t PHL		ř	1	7	1	6.2	115
^t PZH	1 0E	V	1	10	1	9	-
^t PZL	IOE	Y	2	8	2	7.5	ns
^t PHZ		N N	1	6.5	1	6	
^t PLZ	1 0E	Y	1	10.5	1	9	ns
^t PZH		N N	2	11	2	10.5	
^t PZL	20E	Y	3	9.5	3	8.5	ns
^t PHZ	205	V	1	7	1	7	
^t PLZ	20E	Y	2	12	2	12	ns

§ For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

SDAS153E - DECEMBER 1982 - REVISED AUGUST 1995

NOTES: A. CL includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
 C. When measuring propagation delay items of 3-state outputs, switch S1 is open.
- D. All input pulses have the following characteristics: PRR \leq 1 MHz, t_r = t_f = 2 ns, duty cycle = 50%.
- E. The outputs are measured one at a time with one transition per measurement.

Figure 1. Load Circuits and Voltage Waveforms

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any semiconductor product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

TI warrants performance of its semiconductor products and related software to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

Certain applications using semiconductor products may involve potential risks of death, personal injury, or severe property or environmental damage ("Critical Applications").

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS.

Inclusion of TI products in such applications is understood to be fully at the risk of the customer. Use of TI products in such applications requires the written approval of an appropriate TI officer. Questions concerning potential risk applications should be directed to TI through a local SC sales office.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards should be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or services described herein. Nor does TI warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used.

Copyright © 1996, Texas Instruments Incorporated