SDAS119D - FEBRUARY 1987 - REVISED JANUARY 1995

- Functionally Similar to AMD's AM29833
- High-Speed Bus Transceiver With Parity Generator/Checker
- Parity-Error Flag With Open-Collector Outputs
- Register for Storing the Parity-Error Flag
- Package Options Include Plastic Small-Outline (DW) Packages and Standard Plastic (NT) 300-mil DIPs

description

The SN74ALS29833 is an 8-bit to 9-bit parity transceiver designed for two-way communication between data buses. When data is transmitted from the A bus to the B bus, a parity bit is

DW OR NT PACKAGE (TOP VIEW) OEA 24 🛛 Vcc A1 🛛 2 23 B1 A2 🛚 3 22 🛛 B2 21 🛛 B3 A3 🛛 4 20 B B4 A4 5 19 🛛 B5 A5 🛛 6 18 🛛 B6 A6 🛛 7 A7 🛛 8 17 **I** B7 A8 🛛 9 16 🛛 B8 ERR 10 PARITY 15 CLR 11 **DEB** 14 GND 12 13 CLK

generated. When data is transmitted from the B bus to the A bus with its corresponding parity bit, the parity-error (ERR) output indicates whether or not an error in the B data has occurred. The output-enable (OEA, OEB) inputs can be used to disable the device so that the buses are effectively isolated.

A 9-bit parity generator/checker generates a parity-odd (PARITY) output and monitors the parity of the I/O ports with an open-collector ERR flag. ERR is clocked into the register on the rising edge of the clock (CLK) input. The error-flag register is cleared with a low pulse on the clear (\overline{CLR}) input. When both \overline{OEA} and \overline{OEB} are low, data is transferred from the A bus to the B bus and inverted parity is generated. Inverted parity is a forced error condition that gives the designer more system diagnostic capability.

The SN74ALS29833 is characterized for operation from 0°C to 70°C.

INPUTS					OUTPUT AND I/O							
OEB	OEA	CLR	CLK	Ai ∑ of Hs	Bi [†] ∑ of Ls	Α	В	PARITY	ERR‡	FUNCTION		
L	н	х	х	Odd Even	NA	NA	А	L H	NA	A data to B bus and generate parity		
н	L	н	↑	NA	Odd Even	В	NA	NA	H L	B data to A bus and check parity		
Х	Х	L	Х	Х	Х	Х	NA	NA	Н	Clear error-flag register		
н	н	H L H	No↑ No↑ ↑ ↑	X X O E	X d d v e	Z	Z	Z	NC H H	l⊶'-'s§o I a		
L	L	X	X	Odd Even	NA	NA	A	H	NA	A data to B bus and generate inverted parity		

NA = not applicable, NC = no change, X = don't care

[†] Summation of high-level inputs includes PARITY along with Bi inputs.

[‡]Output states shown assume ERR was previously high.

§ In this mode, ERR, when clocked, shows inverted parity of the A bus.

SDAS119D - FEBRUARY 1987 - REVISED JANUARY 1995

logic diagram (positive logic)

error-flag waveforms

SDAS119D - FEBRUARY 1987 - REVISED JANUARY 1995

	ERROR-FLAG FUNCTIONS							
INP	UTS	INTERNAL TO DEVICE	OUTPUT PRESTATE	OUTPUT	FUNCTION			
CLR	CLK	POINT P	ERR _{n-1} †	ERR				
Н	\uparrow	н	н	Н				
н	\uparrow	х	L	L	Sample			
н	\uparrow	L	Х	L				
L	Х	Х	Х	Н	Clear			

† ERR_{n-1} represents the state of ERR before any changes at CLR, CLK, or point P.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)[‡]

Supply voltage, V _{CC}	
Input voltage, V _I	
Voltage applied to a disabled I/O port	5.5 V
Operating free-air temperature range, T _A	0°C to 70°C
Storage temperature range	−65°C to 150°C

[‡] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

recommended operating conditions

			MIN	MAX	UNIT
VCC	Supply voltage		4.75	5.25	V
VIH	High-level input voltage		2		V
VIL	Low-level input voltage			0.8	V
VOH	High-level output voltage, ERR				V
IOH	High-level output current			-24	mA
IOL	Low-level output current			48	mA
		CLK high	10		
tw	Pulse duration	CLK low	10		ns
t _w		CLR low	10		
		Bi and PARITY	17		
t _{su}	Setup time before CLK↑	CLR inactive	15		ns
t _h	Hold time, Bi and PARITY after CLK^\uparrow		0		ns
T _A	Operating free-air temperature		0	70	°C

SDAS119D - FEBRUARY 1987 - REVISED JANUARY 1995

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER		TEST CONDITIONS			түр†	MAX	UNIT
VIK		V _{CC} = 4.75 V,	lj = –18 mA			-1.2	V
Val		V _{CC} = 4.75 V	I _{OH} = – 15 mA	2.4			V
VOH	All I/Os except ERR		I _{OH} = -24 mA	2			v
IOH	ERR	V _{CC} = 4.75 V,	V _{OH} = 5.5 V			0.1	mA
VOL		V _{CC} = 4.75 V,	I _{OL} = 48 mA		0.35	0.5	V
Ц		V _{CC} = 5.25 V,	V _I = 5.5 V			0.1	mA
IIH‡		V _{CC} = 5.25 V,	V _I = 2.7 V			20	μA
. +	Data					-0.2	~^^
IIL‡	Control	V _{CC} = 5.25 V,	V _I = 0.4 V			-0.75	mA
١ ₀ §		V _{CC} = 5.25 V,	VO = 0	-75		-250	mA
ICC		V _{CC} = 5.25 V			70	100	mA

† All typical values are at V_{CC} = 5 V, T_A = 25°C.
‡ For I/O ports, the parameters I_{IH} and I_{IL} include the off-state output current.
§ Not more than one output should be shorted at a time, and the duration of the short circuit should not exceed one second.

switching characteristics (see Figure 1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	V _{CC} = 4.75 V to 5.25 V, T _A = MIN to MAX [¶]	UNIT	
		(001101)		MIN MAX		
^t PLH	A or B		0 50 5	8	ns	
^t PHL	AOLD	B or A	C _L = 50 pF	8	115	
^t PLH	A or B	D an A	0 200 - 5	15	ns	
^t PHL	AOLD	B or A	C _L = 300 pF	15	115	
^t PLH	Α		0. 50 - 5	15	ns	
^t PHL	A	PARITY	C _L = 50 pF	19		
^t PLH	Α		0 000 - 5	22		
^t PHL	A	PARITY	C _L = 300 pF	24	ns	
^t PZH		A	0 50 5	17	ns	
^t PZL	OEA or OEB	A or B	C _L = 50 pF	17	115	
^t PZH		A	0. 200 - 5	23	ns	
^t PZL	OEA OF OEB	A or B	C _L = 300 pF	23	115	
^t PHZ		A	0 5 5	9	ns	
^t PLZ	OEA or OEB	A or B	C _L = 5 pF	9	115	
^t PHZ		A	0 50 5	15	ns	
^t PLZ	OEA or OEB	A or B	C _L = 50 pF	8	115	
^t PHL	CLK	ERR	C _L = 50 pF	13	ns	
^t PLH	CLR	ERR	C _L = 50 pF	13	ns	
^t PLH				17		
^t PHL	OEA	PARITY	C _L = 50 pF	19	ns	
^t PLH	OEA		0 000 - 5	22		
^t PHL		PARITY	CL = 300 pF	25	ns	

I For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

SDAS119D - FEBRUARY 1987 - REVISED JANUARY 1995

PARAMETER MEASUREMENT INFORMATION

NOTES: A. C_L includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, Z_O = 50 Ω , t_r \leq 2.5 ns, t_f \leq 2.5 ns.

Figure 1. Load Circuits and Voltage Waveforms

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any semiconductor product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

TI warrants performance of its semiconductor products and related software to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

Certain applications using semiconductor products may involve potential risks of death, personal injury, or severe property or environmental damage ("Critical Applications").

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS.

Inclusion of TI products in such applications is understood to be fully at the risk of the customer. Use of TI products in such applications requires the written approval of an appropriate TI officer. Questions concerning potential risk applications should be directed to TI through a local SC sales office.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards should be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or services described herein. Nor does TI warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used.

Copyright © 1996, Texas Instruments Incorporated