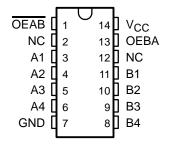
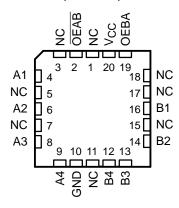
SDAS069B - DECEMBER 1982 - REVISED DECEMBER 1994


- Two-Way Asynchronous Communication Between Data Buses
- pnp Inputs Reduce dc Loading
- Package Options Include Plastic Small-Outline (D) Packages, Ceramic Chip Carriers (FK), and Standard Plastic (N) and Ceramic (J) 300-mil DIPs

description


These quadruple bus transceivers are designed for asynchronous two-way communication between data buses. The control-function implementation allows for maximum flexibility in timing. These devices allow data transmission from the A bus to the B bus or from the B bus to the A bus depending upon the logic levels at the output-enable (OEBA and OEAB) inputs. The output-enable inputs can be used to disable the device so that the buses are effectively isolated.

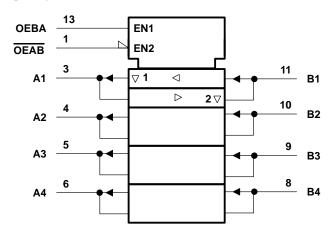
The dual-enable configuration gives the quadruple bus transceivers the capability to store data by simultaneously enabling OEBA and OEAB. Each output reinforces its input in this transceiver configuration. When both control inputs are enabled and all other data sources to the two sets of bus lines are at high impedance, both sets of bus lines (eight in all) retain their states. The 4-bit codes appearing on the two sets of buses are identical.

SN54ALS243A . . . J PACKAGE SN74ALS243A . . . D OR N PACKAGE (TOP VIEW)

SN54ALS243A . . . FK PACKAGE (TOP VIEW)

NC - No internal connection

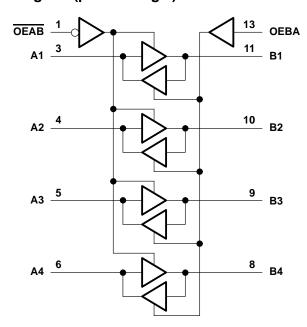
The SN54ALS243A is characterized for operation over the full military temperature range of -55° C to 125° C. The SN74ALS243A is characterized for operation from 0° C to 70° C.


FUNCTION TABLE

INP	UTS	FUNCTION					
OEAB	OEBA	FUNCTION					
L	L	A to B					
Н	Н	B to A					
Н	L	Isolation					
L	Н	Latch A and B (A = B)					

SN54ALS243A, SN74ALS243A QUADRUPLE BUS TRANSCEIVERS WITH 3-STATE OUTPUTS

SDAS069B - DECEMBER 1982 - REVISED DECEMBER 1994


logic symbol†

† This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

Pin numbers shown are for the D, J, and N packages.

logic diagram (positive logic)

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)‡

Supply voltage, V _{CC}	
Input voltage, V _I : All inputs	7 V
I/O ports	5.5 V
Operating free-air temperature range, T _A : SN54ALS243A	-55°C to 125°C
SN74ALS243A	0°C to 70°C
Storage temperature range	-65°C to 150°C

[‡] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

recommended operating conditions

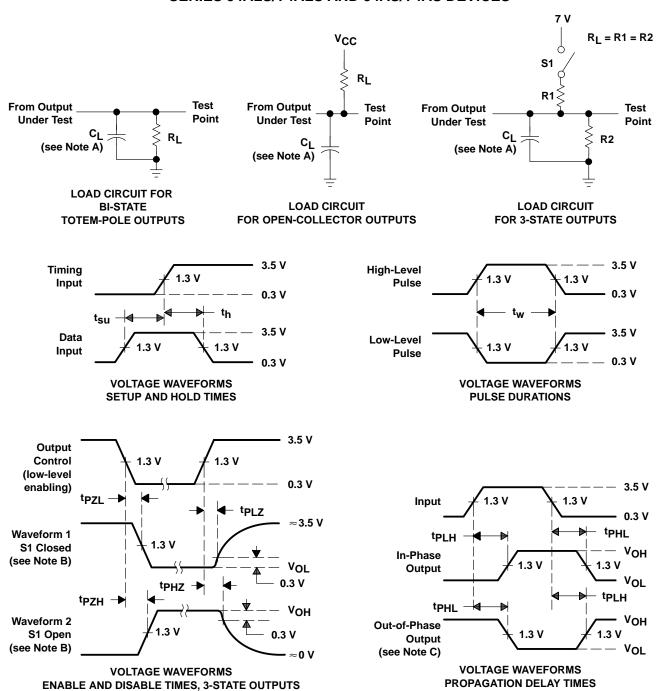
		SN54ALS243A			SN74ALS243A			UNIT
		MIN	NOM	MAX	MIN	NOM	MAX	UNII
Vcc	Supply voltage	4.5	5	5.5	4.5	5	5.5	V
VIH	High-level input voltage	2			2			V
VIL	Low-level input voltage			0.7		-	0.8	V
loh	High-level output current			-12			-15	mA
l _{OL}	Low-level output current			12			24	mA
T _A	Operating free-air temperature	-55		125	0		70	°C

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER		TEST CONDITIONS		SN54ALS243A			SN74ALS243A			LINUT	
				MIN	TYP [†]	MAX	MIN	TYP [†]	MAX	UNIT	
VIK		$V_{CC} = 4.5 \text{ V},$	$I_1 = -18 \text{ mA}$			-1.2			-1.2	V	
		$V_{CC} = 4.5 \text{ V to } 5.5 \text{ V},$	$I_{OH} = -0.4 \text{ mA}$	V _{CC} -2			V _{CC} -2				
\/a		V _{CC} = 4.5 V	$I_{OH} = -3 \text{ mA}$	2.4	3.2		2.4	3.2		V	
VOH			$I_{OH} = -12 \text{ mA}$	2							
			$I_{OH} = -15 \text{ mA}$				2				
VOL		V _{CC} = 4.5 V	I _{OL} = 12 mA		0.25	0.4		0.25	0.4	V	
VOL			I _{OL} = 24 mA					0.35	0.5		
١.	Control inputs	V _{CC} = 5.5 V	V _I = 7 V			0.1			0.1	mA	
i,	A or B ports		V _I = 5.5 V			0.1			0.1	IIIA	
l	Control inputs	V _{CC} = 5.5 V,	V _I = 27.7′ v			20			20	μΑ	
ΊΗ	A or B ports‡					20			20		
l	Control inputs	V _{CC} = 5.5 V,	V _I ='0'.'4' v			-0.1			-0.1	1 mA	
ΊL	A or B ports \ddagger $^{\text{VCC}} = 5.5 \text{ V},$		V = 0.4 V			-0.1			-0.1	IIIA	
IO§		$V_{CC} = 5.5 \text{ V},$	V _O = 2.25 V	-20		-112	-30		-112	mA	
	V _{CC} = 5.5 V	Outputs high		15	30		15	25			
ICC		V _{CC} = 5.5 V	Outputs low		20	35		20	30	mA	
			Outputs disabled		21	37		21	32		

switching characteristics (see Figure 1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	V _C C _L R1 R2 T _A SN54AL	UNIT			
			MIN	MAX	SN74AL MIN	MAX	
[†] PLH	A or B	B or A	4	15	4	11	ns
^t PHL			4	15	4	11	
^t PZH	ŌEAB	В	7	25	7	20	ns
tPZL			7	25	7	20	
^t PHZ	OEAB	Б	2	16	2	14	ns
^t PLZ	OEAB	В	3	27	3	22	115
^t PZH	OEBA		7	25	7	20	ns
t _{PZL}		А	7	25	7	20	115
^t PHZ	ОЕВА	А	2	16	2	14	ns
tPLZ		Α	3	27	3	22	115


[¶] For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

[†] All typical values are at V_{CC} = 5 V, T_A = 25°C. ‡ For I/O ports, the parameters I_{IH} and I_{IL} include the off-state output current.

[§] The output conditions have been chosen to produce a current that closely approximates one half of the true short-circuit output current, los.

PARAMETER MEASUREMENT INFORMATION SERIES 54ALS/74ALS AND 54AS/74AS DEVICES

- NOTES: A. C_L includes probe and jig capacitance.
 - B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
 - C. When measuring propagation delay items of 3-state outputs, switch S1 is open.
 - All input pulses have the following characteristics: PRR \leq 1 MHz, $t_{\Gamma} = t_{f} = 2$ ns, duty cycle = 50%.
 - The outputs are measured one at a time with one transition per measurement.

Figure 1. Load Circuits and Voltage Waveforms

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any semiconductor product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

TI warrants performance of its semiconductor products and related software to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

Certain applications using semiconductor products may involve potential risks of death, personal injury, or severe property or environmental damage ("Critical Applications").

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS.

Inclusion of TI products in such applications is understood to be fully at the risk of the customer. Use of TI products in such applications requires the written approval of an appropriate TI officer. Questions concerning potential risk applications should be directed to TI through a local SC sales office.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards should be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or services described herein. Nor does TI warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used.

Copyright © 1996, Texas Instruments Incorporated