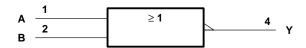
SN74AHCT1G02 SINGLE 2-INPUT POSITIVE-NOR GATE

SCLS341D - APRIL 1996 - REVISED JUNE 1997

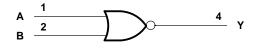
- Inputs Are TTL-Voltage Compatible
- *EPIC*[™] (Enhanced-Performance Implanted CMOS) Process
- High Latch-Up Immunity Exceeds 250 mA Per JESD 17
- ESD Protection Exceeds 2000 V Per MIL-STD-883, Method 3015; Exceeds 200 V Using Machine Model (C = 200 pF, R = 0)
- Packaged in Plastic Small-Outline Transistor Package

description


This device contains a single 2-input NOR gate that performs the Boolean function $Y = \overline{A} \bullet \overline{B}$ or $Y = \overline{A + B}$ in positive logic.

The SN74AHCT1G02 is characterized for operation from -40°C to 85°C.

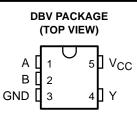
(each gate)								
INP	JTS	OUTPUT						
Α	В	Y						
Н	Х	L						
х	н	L						
L	L	Н						


FUNCTION TABLE

logic symbol[†]

[†] This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

logic diagram (positive logic)


Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

EPIC is a trademark of Texas Instruments Incorporated.

PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.

Copyright © 1997, Texas Instruments Incorporated

SN74AHCT1G02 SINGLE 2-INPUT POSITIVE-NOR GATE

SCLS341D – APRIL 1996 – REVISED JUNE 1997

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)[†]

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

2. The package thermal impedance is calculated in accordance with JESD 51.

recommended operating conditions (see Note 3)

		MIN	MAX	UNIT
V _{CC}	Supply voltage	4.5	5.5	V
VIH	High-level input voltage	2		V
VIL	Low-level input voltage		0.8	V
VI	Input voltage	0	5.5	V
Vo	Output voltage	0	VCC	V
IOH	High-level output current		-8	mA
I _{OL}	Low-level output current		8	mA
$\Delta t/\Delta v$	Input transition rise or fall rate		20	ns/V
Τ _Α	Operating free-air temperature	-40	85	°C

NOTE 3: Unused inputs must be held high or low to prevent them from floating.

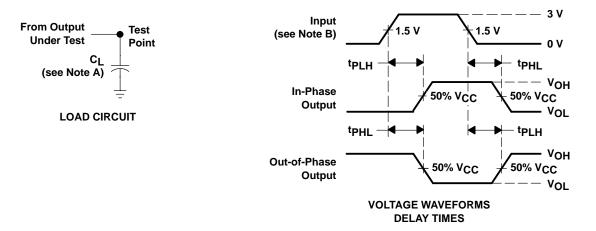
electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS	vcc	T _A = 25°C			MIN	МАХ	UNIT
PARAMETER			MIN	TYP	MAX	IVITIN	MAA	UNIT
Veu	I _{OH} = -50 μA	4.5 V	4.4	4.5		4.4		v
VOH	I _{OH} = -8 mA	4.5 V	3.94			3.8		
Ve	$I_{OL} = 50 \ \mu A$	4.5 V			0.1		0.1	V
VOL	I _{OL} = 8 mA	4.5 V			0.36		0.44	
lj	$V_I = V_{CC}$ or GND	5.5 V			±0.1		±1	μA
ICC	$V_{I} = V_{CC}$ or GND, $I_{O} = 0$	5.5 V			1		10	μA
ΔI_{CC}^{\ddagger}	One input at 3.4 V, Other inputs at GND or V_{CC}	5.5 V			1.35		1.5	mA
Ci	$V_I = V_{CC}$ or GND	5 V		4	10		10	pF

[‡]This is the increase in supply current for each input at one of the specified TTL voltage levels rather than 0 V or V_{CC}.

SN74AHCT1G02 SINGLE 2-INPUT POSITIVE-NOR GATE

SCLS341D - APRIL 1996 - REVISED JUNE 1997


switching characteristics over recommended operating free-air temperature range, V_{CC} = 5 V \pm 0.5 V (unless otherwise noted) (see Figure 1)

PARAMETER		то	LOAD CAPACITANCE	T _A = 25°C			MIN	мах	UNIT
FARAWETER		(OUTPUT)		MIN	TYP	MAX		MAA	UNIT
^t PLH	A or P	V	C _L = 15 pF		2.4	5.5	1	6.5	20
^t PHL	A or B	T			3.5	5.5	1	6.5	ns
^t PLH	A or B	v	C: 50 pF		3.4	7.5	1	8.5	20
^t PHL		ſ	C _L = 50 pF		4.5	7.5	1	8.5	ns

operating characteristics, V_{CC} = 5 V, T_A = 25°C

PARAMETER		TEST C	ONDITIONS	TYP	UNIT
C _{pd}	Power dissipation capacitance	No load,	f = 1 MHz	17	pF

PARAMETER MEASUREMENT INFORMATION

- NOTES: A. C_L includes probe and jig capacitance.
 - B. Input pulses are supplied by generators having the following characteristics: PRR \leq 1 MHz, Z_O = 50 Ω , t_f = 3 ns, t_f = 3 ns.
 - C. The output is measured with one input transition per measurement.

Figure 1. Load Circuit and Voltage Waveforms

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any semiconductor product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

TI warrants performance of its semiconductor products and related software to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

Certain applications using semiconductor products may involve potential risks of death, personal injury, or severe property or environmental damage ("Critical Applications").

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS.

Inclusion of TI products in such applications is understood to be fully at the risk of the customer. Use of TI products in such applications requires the written approval of an appropriate TI officer. Questions concerning potential risk applications should be directed to TI through a local SC sales office.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards should be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or services described herein. Nor does TI warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used.

Copyright © 1996, Texas Instruments Incorporated