### SN54AHCT16245, SN74AHCT16245 **16-BIT BUS TRANSCEIVERS** WITH 3-STATE OUTPUTS SCLS335C - MARCH 1996 - REVISED JUNE 1997

SN54AHCT16245...WD PACKAGE **Members of the Texas Instruments** SN74AHCT16245 ... DGG OR DL PACKAGE Widebus™ Family (TOP VIEW) Inputs Are TTL-Voltage Compatible **EPIC<sup>™</sup>** (Enhanced-Performance Implanted 48 1 1 OE 1DIR **CMOS) Process** 47 🛛 1A1 1B1 🛛 2 Distributed V<sub>CC</sub> and GND Pin Configuration 1B2 46 AA2 **Minimizes High-Speed Switching Noise** GND 4 45 GND 1B3 🛛 5 44 🛛 1A3 Flow-Through Architecture Optimizes PCB 1B4 6 43 🛛 1A4 Layout Package Options Include Plastic 300-mil Shrink Small-Outline (DL) and Thin Shrink Small-Outline (DGG) Packages and 380-mil D Fine-Pitch Ceramic Flat (WD) Package Using 25-mil Center-to-Center Spacings description The 'AHCT16245 are 16-bit (dual-octal) D noninverting 3-state transceivers designed for synchronous two-way communication between data buses. The control-function implementation minimizes external timing requirements.

These devices can be used as two 8-bit transceivers or one 16-bit transceiver. They allow data transmission from the A bus to the B bus or from the B bus to the A bus, depending on the logic level at the direction-control (DIR) input. The output-enable  $(\overline{OE})$  input can be used to disable the device so that the buses are effectively isolated.

| _                 |    |    |                   |
|-------------------|----|----|-------------------|
| v <sub>cc</sub> [ | 7  | 42 | ] v <sub>cc</sub> |
| 1B5 [             | 8  | 41 | ] 1A5             |
| 1B6 🛛             | 9  | 40 | ] 1A6             |
| GND 🛛             | 10 | 39 | ] GND             |
| 1B7 🛛             | 11 | 38 | ] 1A7             |
| 1B8 🛛             | 12 | 37 | ] 1A8             |
| 2B1 🛛             | 13 | 36 | 2A1               |
| 2B2 🛛             | 14 | 35 | 2A2               |
| GND [             | 15 | 34 | ] GND             |
| 2B3 🛛             | 16 | 33 | 2A3               |
| 2B4 🛛             | 17 | 32 | 2A4               |
| V <sub>CC</sub> [ | 18 | 31 | V <sub>CC</sub>   |
| 2B5               | 19 | 30 | 2A5               |
| 2B6 🛛             | 20 | 29 | 2A6               |
| GND [             | 21 | 28 | ] GND             |
| 2B7 🛛             | 22 | 27 | 2A7               |
| 2B8 🛛             | 23 | 26 | 2A8               |
| 2DIR              | 24 | 25 | 20E               |

The SN54AHCT16245 is characterized for operation over the full military temperature range of –55°C to 125°C The SN74AHCT16245 is characterized for operation from -40°C to 85°C.

| FUNCTION TABLE<br>(each 8-bit section) |     |                 |  |  |  |  |  |
|----------------------------------------|-----|-----------------|--|--|--|--|--|
| INPUTS OPERATION                       |     |                 |  |  |  |  |  |
| OE                                     | DIR | OPERATION       |  |  |  |  |  |
| L                                      | L   | B data to A bus |  |  |  |  |  |
| L                                      | н   | A data to B bus |  |  |  |  |  |
| н                                      | Х   | Isolation       |  |  |  |  |  |



Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

EPIC and Widebus are trademarks of Texas Instruments Incorporated.

PRODUCT PREVIEW information concerns products in the formative or design phase of development. Characteristic data and other specifications are design goals. Texas Instruments reserves the right to change or discontinue these products without notice.



## SN54AHCT16245, SN74AHCT16245 16-BIT BUS TRANSCEIVERS WITH 3-STATE OUTPUTS

SCLS335C - MARCH 1996 - REVISED JUNE 1997

#### logic symbol<sup>†</sup>



<sup>†</sup> This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

## logic diagram (positive logic)







## SN54AHCT16245, SN74AHCT16245 **16-BIT BUS TRANSCEIVERS** WITH 3-STATE OUTPUTS

SCLS335C - MARCH 1996 - REVISED JUNE 1997

#### absolute maximum ratings over operating free-air temperature range (unless otherwise noted)<sup>†</sup>

| $\begin{array}{llllllllllllllllllllllllllllllllllll$ | $\begin{array}{c} -0.5 \ V \ to \ 7 \ V \\ \prime \ to \ V_{CC} + 0.5 \ V \\ -20 \ mA \\ \dots & \pm 20 \ mA \\ \dots & \pm 25 \ mA \\ \dots & \pm 25 \ mA \\ \dots & \pm 75 \ mA \\ \dots & 89^{\circ}C/W \\ \dots & 94^{\circ}C/W \end{array}$ |
|------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Storage temperature range, I <sub>stg</sub>          | -65°C to 150°C                                                                                                                                                                                                                                   |

<sup>†</sup> Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

2. The package thermal impedance is calculated in accordance with JESD 51.

#### recommended operating conditions (see Note 3)

|                     |                                    | SN54AHC | T16245 | SN74AHC | UNIT |      |
|---------------------|------------------------------------|---------|--------|---------|------|------|
|                     |                                    | MIN     | MAX    | MIN     | MAX  |      |
| Vcc                 | Supply voltage                     | 4.5     | 5.5    | 4.5     | 5.5  | V    |
| VIH                 | High-level input voltage           | 2       |        | 2       |      | V    |
| VIL                 | Low-level input voltage            |         | 0.8    |         | 0.8  | V    |
| VI                  | Input voltage                      | 0       | 5.5    | 0       | 5.5  | V    |
| VIO                 | Input/output voltage, A or B pins  | 0       | VCC    | 0       | VCC  | V    |
| ЮН                  | High-level output current          |         | -8     |         | -8   | mA   |
| IOL                 | Low-level output current           |         | 8      |         | 8    | mA   |
| $\Delta t/\Delta v$ | Input transition rise or fall rate |         | 20     |         | 20   | ns/V |
| ТА                  | Operating free-air temperature     | -55     | 125    | -40     | 85   | °C   |

NOTE 3: Unused inputs must be held high or low to prevent them from floating.

#### electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

|       | RAMETER       | TEST CONDITIONS                                               | Vaa   | Т    | ן = 25°C | ;     | SN54AHC | T16245 | SN74AHC | Г16245 | UNIT |
|-------|---------------|---------------------------------------------------------------|-------|------|----------|-------|---------|--------|---------|--------|------|
| FAT   | RAMETER       | TEST CONDITIONS                                               | Vcc   | MIN  | TYP      | MAX   | MIN     | MAX    | MIN     | MAX    | UNIT |
| Volt  |               | I <sub>OH</sub> = -50 μA                                      | 4.5 V | 4.4  | 4.5      |       | 4.4     |        | 4.4     |        | V    |
| VOH   |               | I <sub>OH</sub> = –8 mA                                       | 4.5 V | 3.94 |          |       | 3.8     |        | 3.8     |        | v    |
| Vei   |               | I <sub>OL</sub> = 50 μA                                       | 4.5 V |      |          | 0.1   |         | 0.1    |         | 0.1    | V    |
| VOL   |               | I <sub>OL</sub> = 8 mA                                        | 4.5 V |      |          | 0.36  |         | 0.44   |         | 0.44   | v    |
| loz‡  | A or B inputs | $V_O = V_{CC}$ or GND                                         | 5.5 V |      |          | ±0.25 |         | ±2.5   |         | ±2.5   | μA   |
| Ц     | OE or DIR     | $V_I = V_{CC}$ or GND                                         | 5.5 V |      |          | ±0.1  |         | ±1     |         | ±1     | μΑ   |
| ICC   |               | $V_{I} = V_{CC} \text{ or GND},  I_{O} = 0$                   | 5.5 V |      |          | 4     |         | 40     |         | 40     | μΑ   |
| ∆ICC§ |               | One input at 3.4 V,<br>Other inputs at V <sub>CC</sub> or GND | 5.5 V |      |          | 1.35  |         | 1.5    |         | 1.5    | mA   |
| Ci    | OE or DIR     | VI = V <sub>CC</sub> or GND                                   | 5 V   |      | 2.5      | 10    |         |        |         | 10     | pF   |
| Cio   | A or B inputs | $V_I = V_{CC}$ or GND                                         | 5 V   |      | 4        |       |         |        |         |        | pF   |

<sup>‡</sup> For I/O ports, the parameter IOZ includes the input leakage current.

§ This is the increase in supply current for each input at one of the specified TTL voltage levels rather than 0 V or V<sub>CC</sub>.



## SN54AHCT16245, SN74AHCT16245 16-BIT BUS TRANSCEIVERS WITH 3-STATE OUTPUTS

SCLS335C - MARCH 1996 - REVISED JUNE 1997

# switching characteristics over recommended operating free-air temperature range, $V_{CC}$ = 5 V $\pm$ 0.5 V (unless otherwise noted) (see Figure 1)

| 00                            | •       | -         | , ,                    |     | 0        | ,    |         |        |         |        |      |
|-------------------------------|---------|-----------|------------------------|-----|----------|------|---------|--------|---------|--------|------|
| PARAMETER                     | FROM    | то        | LOAD                   | Τį  | λ = 25°C | ;    | SN54AHC | T16245 | SN74AHC | Г16245 | UNIT |
| PARAMETER                     | (INPUT) | (OUTPUT)  | CAPACITANCE            | MIN | TYP      | MAX  | MIN     | MAX    | MIN     | MAX    | UNIT |
| <sup>t</sup> PLH <sup>*</sup> | A or B  | B or A    | CI = 15 pF             |     | 4.5      | 7.7  | 1       | 8.5    | 1       | 8.5    | ns   |
| <sup>t</sup> PHL <sup>*</sup> | AUID    | DUIA      | CL = 15 pr             |     | 4.5      | 7.7  | 1       | 8.5    | 1       | 8.5    | 115  |
| <sup>t</sup> PZH <sup>*</sup> | OE      | OF A or B | CI = 15 pF             |     | 8.9      | 13.8 | 1       | 15     | 1       | 15     | ns   |
| <sup>t</sup> PZL*             | ÛE      | AUD       | 0L = 15 pr             |     | 8.9      | 13.8 | 1       | 15     | 1       | 15     | 115  |
| <sup>t</sup> PHZ <sup>*</sup> | OE      | A or B    | CI = 15 pF             |     | 9.2      | 14.4 | 1       | 15.5   | 1       | 15.5   | ns   |
| <sup>t</sup> PLZ <sup>*</sup> | OL      | AUD       | 0L = 15 pr             |     | 9.2      | 14.4 | 1       | 15.5   | 1       | 15.5   | 115  |
| <sup>t</sup> PLH              | A or B  | B or A    | C <sub>I</sub> = 50 pF |     | 5.3      | 8.7  | 1       | 9.5    | 1       | 9.5    | ns   |
| <sup>t</sup> PHL              | AUID    | DUIA      | CL = 50 pF             |     | 5.3      | 8.7  | 1       | 9.5    | 1       | 9.5    | 115  |
| <sup>t</sup> PZH              | OE      | A or B    | C <sub>I</sub> = 50 pF |     | 9.7      | 14.8 | 1       | 16     | 1       | 16     | ns   |
| <sup>t</sup> PZL              | ÛE      | AUD       | CL = 20 hr             |     | 9.7      | 14.8 | 1       | 16     | 1       | 16     | 115  |
| <sup>t</sup> PHZ              | OE      | A or B    | C <sub>I</sub> = 50 pF |     | 10       | 15.4 | 1       | 16.5   | 1       | 16.5   | ns   |
| <sup>t</sup> PLZ              | UE      | AUD       | 0L = 30 pr             |     | 10       | 15.4 | 1       | 16.5   | 1       | 16.5   | 115  |

\* On products compliant to MIL-PRF-38535, this parameter is ensured but not production tested.

## output-skew characteristics, C<sub>L</sub> = 50 pF (see Note 4)

| PARAMETER                      |                                 | SN74AH                |         |      |
|--------------------------------|---------------------------------|-----------------------|---------|------|
|                                |                                 | T <sub>A</sub> = 25°C | MIN MAX | UNIT |
|                                |                                 | MIN MAX               |         |      |
| t <sub>sk(o)</sub> Output skew | $5 \text{ V} \pm 0.5 \text{ V}$ | 1                     | 1       | ns   |

NOTE 4: Characteristics are determined during product characterization and ensured by design.

## noise characteristics, $V_{CC}$ = 5 V, $C_L$ = 50 pF, $T_A$ = 25°C (see Note 5)

|                    | PARAMETER                                     |             | SN74AHCT16245 |      |   |  |
|--------------------|-----------------------------------------------|-------------|---------------|------|---|--|
|                    |                                               | MIN TYP MAX |               | UNIT |   |  |
| VOL(P)             | Quiet output, maximum dynamic V <sub>OL</sub> |             |               |      | V |  |
| VOL(V)             | Quiet output, minimum dynamic V <sub>OL</sub> |             |               |      | V |  |
| VOH(V)             | Quiet output, minimum dynamic V <sub>OH</sub> |             | 4             |      | V |  |
| V <sub>IH(D)</sub> | High-level dynamic input voltage              | 2           |               |      | V |  |
| V <sub>IL(D)</sub> | Low-level dynamic input voltage               |             |               | 0.8  | V |  |

NOTE 5: Characteristics are determined during product characterization and ensured by design for surface-mount packages only.

## operating characteristics, V<sub>CC</sub> = 5 V, $T_A$ = 25°C

|     | PARAMETER                     |          | ONDITIONS | TYP | UNIT |
|-----|-------------------------------|----------|-----------|-----|------|
| Cpd | Power dissipation capacitance | No load, | f = 1 MHz | 13  | pF   |



₀ **Vcc** TEST S1 **S**1 O Open 1 kΩ tPLH/tPHL Open From Output  $\Lambda \Lambda$ O GND **Under Test** Vcc tPLZ/tPZL GND tPHZ/tPZH CL (see Note A) **Output Control** 3 V (low-level 1.5 V 1.5 V LOAD CIRCUIT enabling) 0 V <sup>t</sup>PLZ <sup>t</sup>PZL Output 3 V Waveform 1 ≈ VCC Input 1.5 V 1.5 V S1 at V<sub>CC</sub> 50% Vcc V<sub>OL</sub> + 0.3 V 0 V (see Note B) VOL <sup>t</sup>PLH <sup>t</sup>PHL tPZH -<sup>t</sup>PHZ Output VOH ۷он Waveform 2 V<sub>OH</sub> – 0.3 V 50% V<sub>CC</sub> 50% V<sub>CC</sub> Output 50% V<sub>CC</sub> S1 at GND ≈ 0 V · Vol (see Note B) **VOLTAGE WAVEFORMS VOLTAGE WAVEFORMS** DELAY TIMES **ENABLE AND DISABLE TIMES** 

### PARAMETER MEASUREMENT INFORMATION

NOTES: A. CL includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR  $\leq$  1 MHz, Z<sub>O</sub> = 50  $\Omega$ , t<sub>f</sub> = 3 ns, t<sub>f</sub> = 3 ns.
- D. The outputs are measured one at a time with one input transition per measurement.

#### Figure 1. Load Circuit and Voltage Waveforms



#### **IMPORTANT NOTICE**

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any semiconductor product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

TI warrants performance of its semiconductor products and related software to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

Certain applications using semiconductor products may involve potential risks of death, personal injury, or severe property or environmental damage ("Critical Applications").

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS.

Inclusion of TI products in such applications is understood to be fully at the risk of the customer. Use of TI products in such applications requires the written approval of an appropriate TI officer. Questions concerning potential risk applications should be directed to TI through a local SC sales office.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards should be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or services described herein. Nor does TI warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used.

Copyright © 1996, Texas Instruments Incorporated