SCLS329B – MARCH 1996 – REVISED JUNE 1997

31 V_{CC}

29 2D6

2D7

Copyright © 1997, Texas Instruments Incorporated

30

28 GND

27

2D5

2Q6

GND 🛛

2Q7

2Q5 🛛 19

20

21

22

 Members of the Texas Instruments Widebus™ Family 	SN54AHC16373 WD PACKAGE SN74AHC16373 DGG OR DL PACKAGE (TOP VIEW)
• Operating Range 2-V to 5.5-V V _{CC}	
 EPIC[™] (Enhanced-Performance Implanted CMOS) Presses 	
CMOS) Process	1Q1 2 47 1D1
 Distributed V_{CC} and GND Pin Configuration 	1Q2 [] ₃ 46 [] 1D2
Minimizes High-Speed Switching Noise	GND 4 45 GND
• Flow-Through Architecture Optimizes PCB	1Q3 🛛 5 44 🖸 1D3
Layout	1Q4 🛛 6 43 🗍 1D4
 Package Options Include Plastic 300-mil 	V _{CC} [] 7 42 [] V _{CC}
Shrink Small-Outline (DL) and Thin Shrink	1Q5 🛛 _{8 41} 🗍 1D5
Small-Outline (DGG) Packages and 380-mil	1Q6 🛛 9 🛛 40 🗍 1D6
Fine-Pitch Ceramic Flat (WD) Package	GND [] 10 39 [] GND
Using 25-mil Center-to-Center Spacings	1Q7 🚺 _{11 38} 🗍 1D7
Using 23-nin Center-to-Center Opacings	1Q8 🛛 _{12 37} 🗍 1D8
description	2Q1 🛛 _{13 36} 🗍 2D1
	2Q2 [14 35] 2D2
The 'AHC16373 are 16-bit transparent D-type	GND [15 34] GND
latches with 3-state outputs designed specifically	2Q3 [16 33] 2D3
for driving highly capacitive or relatively	2Q4 [17 32] 2D4

one 16-bit latch. When the latch-enable (LE) input is high, the Q outputs follow the data (D) inputs. When LE is taken low, the Q outputs are latched at the levels at the D inputs. A buffered output-enable (\overline{OE}) input can be used to place the eight outputs in either a normal logic state (high or low logic levels) or a high-impedance state. In the high-impedance state, the outputs neither load nor drive the bus lines significantly. The high-impedance state and the increased drive provide the capability to drive bus lines without need for interface or pullup components.

OE does not affect internal operations of the latch. Old data can be retained or new data can be entered while the outputs are in the high-impedance state.

The SN54AHC16373 is characterized for operation over the full military temperature range of -55° C to 125° C. The SN74AHC16373 is characterized for operation from -40° C to 85° C.

registers.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

EPIC and Widebus are trademarks of Texas Instruments Incorporated.

low-impedance loads. They are particularly

suitable for implementing buffer registers, I/O

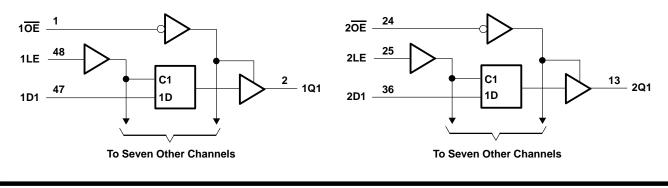
ports, bidirectional bus drivers, and working

These devices can be used as two 8-bit latches or

PRODUCT PREVIEW information concerns products in the formative or design phase of development. Characteristic data and other specifications are design goals. Texas Instruments reserves the right to change or discontinue these products without notice.

PRODUCT PREVIEW

SCLS329B - MARCH 1996 - REVISED JUNE 1997


	FUNCTION TABLE (each latch)											
	INPUTS	OUTPUT										
OE	LE	D	Q									
L	Н	Н	Н									
L	н	L	L									
L	L	Х	Q ₀									
Н	Х	Х	Z									

logic symbol[†]

1 <mark>0E</mark>	1	1EN		
1LE	48	C3		
2 <u>0E</u>	24	2EN		
20L 2LE	25	C4		
ZLC		C4		
1D1	47	 3D 1 ⊽	2	1Q1
1D2	46	30 1 0	3	1Q2
1D2	44		5	1Q3
1D4	43		6	1Q4
1D5	41		8	1Q5
1D6	40		9	1Q6
1D7	38		11	1Q7
1D7	37		12	1Q7
2D1	36	4D 2 ▽	13	2Q1
2D1 2D2	35	40 2 V	14	2Q2
2D2	33		16	2Q2
2D3 2D4	32		17	2Q3
2D4 2D5	30		19	2Q4 2Q5
2D5 2D6	29		20	2Q5
2D0 2D7	27		22	2Q0
2D7 2D8	26		23	2Q7 2Q8
200				240

[†] This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

logic diagram (positive logic)

SCLS329B - MARCH 1996 - REVISED JUNE 1997

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)[†]

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

2. The package thermal impedance is calculated in accordance with JESD 51.

recommended operating conditions (see Note 3)

			SN54AH	C16373	SN74AH0	C16373	UNIT
			MIN	MAX	MIN	MAX	UNIT
VCC	Supply voltage		2	5.5	2	5.5	V
		$V_{CC} = 2 V$	1.5		1.5		
VIH	High-level input voltage	$V_{CC} = 3 V$	2.1		2.1		V
		$V_{CC} = 5.5 V$	3.85		3.85		
		$V_{CC} = 2 V$		0.5		0.5	
VIL	Low-level input voltage	$V_{CC} = 3 V$		0.9		0.9	V
		$V_{CC} = 5.5 V$		1.65		1.65	
VI	Input voltage		0	5.5	0	5.5	V
VO	Output voltage		0	VCC	0	VCC	V
		$V_{CC} = 2 V$		-50		-50	μΑ
ЮН	High-level output current	$V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}$		-4		-4	mA
		V_{CC} = 5 V ± 0.5 V		-8		-8	mA
		$V_{CC} = 2 V$		50		50	μΑ
IOL	Low-level output current	$V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}$		4		4	mA
		V_{CC} = 5 V ± 0.5 V		8		8	ША
A #/ A \ .	Input transition rise or fell rate	$V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}$		100		100	20 /1
Δt/Δv	Input transition rise or fall rate	V_{CC} = 5 V ± 0.5 V		20		20	ns/V
Т _А	Operating free-air temperature		-55	125	-40	85	°C

NOTE 3: Unused inputs must be held high or low to prevent them from floating.

SCLS329B - MARCH 1996 - REVISED JUNE 1997

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS	Vee	Τį	ς = 25°C	;	SN54AH0	C16373	SN74AHC	C16373	UNIT
FARAMETER	TEST CONDITIONS	Vcc	MIN	TYP	MAX	MIN	MAX	MIN	MAX	UNIT
		2 V	1.9			1.9		1.9		
	I _{OH} = -50 μA	3 V	2.9			2.9		2.9		
VOH		4.5 V	4.4			4.4		4.4		V
	$I_{OH} = -4 \text{ mA}$	3 V	2.58			2.48		2.48		
	I _{OH} = -8 mA	4.5 V	3.94			3.8		3.8		
		2 V			0.1		0.1		0.1	
	I _{OL} = 50 μA	3 V			0.1		0.1		0.1	
VOL		4.5 V			0.1		0.1		0.1	V
	I _{OL} = 4 mA	3 V			0.36		0.5		0.44	
	I _{OL} = 8 mA	4.5 V			0.36		0.5		0.44	
lj	$V_I = V_{CC}$ or GND	5.5 V			±0.1		±1		±1	μA
IOZ	$V_{O} = V_{CC}$ or GND, $V_{I} = V_{IL}$ or V_{IH}	5.5 V			±0.25		±2.5		±2.5	μA
ICC	$V_{I} = V_{CC} \text{ or } GND, I_{O} = 0$	5.5 V			4		40		40	μA
Ci	V _I = V _{CC} or GND	5 V		4	10				10	pF
Co	$V_{O} = V_{CC}$ or GND	5 V		6						pF

timing requirements over recommended operating free-air temperature range, V_{CC} = 3.3 V \pm 0.3 V (unless otherwise noted) (see Figure 1)

		T _A = 2	T _A = 25°C		C16373	SN74AHC	UNIT	
		MIN	MAX	MIN	MAX	MIN	MAX	UNIT
tw	Pulse duration, LE high	5		5		5		ns
t _{su}	Setup time, data before LE \downarrow	4		4		4		ns
t _h	Hold time, data after LE \downarrow	1		1		1		ns

timing requirements over recommended operating free-air temperature range, V_{CC} = 5 V \pm 0.5 V (unless otherwise noted) (see Figure 1)

		T _A = 25°C		SN54AH0	C16373	SN74AHC	UNIT	
		MIN	MAX	MIN	MAX	MIN	MAX	UNIT
tw	Pulse duration, LE high	5		5		5		ns
t _{su}	Setup time, data before LE \downarrow	4		4		4		ns
th	Hold time, data after LE \downarrow	1		1		1		ns

SN54AHC16373, SN74AHC16373 16-BIT TRANSPARENT D-TYPE LATCHES WITH 3-STATE OUTPUTS SCLS329B – MARCH 1996 – REVISED JUNE 1997

switching characteristics over recommended operating free-air temperature range,
V_{CC} = 3.3 V ± 0.3 V (unless otherwise noted) (see Figure 1)

00		-	-	_		-			-					
PARAMETER	FROM	то	LOAD	Τ ₄	λ = 25°C	;	SN54AH0	C16373	SN74AHC	:16373	UNIT			
FARAMETER	(INPUT)	(OUTPUT)	CAPACITANCE	MIN	TYP	MAX	MIN	MAX	MIN	MAX	UNIT			
^t PLH [*]	D	Q	Ci = 15 pF		7.3	11.4	1	13.5	1	13.5	ns			
^t PHL*	D	Q	C _L = 15 pF		7.3	11.4	1	13.5	1	13.5	115			
^t PLH*	LE	Q	Ci - 15 pE		7	11	1	13	1	13	ns			
^t PHL*	LC	Q	C _L = 15 pF		7	11	1	13	1	13	115			
^t PZH [*]	OE	Q	Ci - 15 pE		7.3	11.4	1	13.5	1	13.5	ns			
^t PZL [*]	ÛE	Q	C _L = 15 pF		7.3	11.4	1	13.5	1	13.5	115			
^t PHZ [*]	OE	Q	C _I = 15 pF		7	10	1	12	1	12	ns			
^t PLZ [*]	UE	Q Q	Š	Ŷ	×			7	10	1	12	1	12	113
^t PLH	D	Q	$C_{1} = 50 \text{ pF}$		9.8	14.9	1	17	1	17	ns			
^t PHL	D	Q	C _L = 50 pF		9.8	14.9	1	17	1	17	ns			
^t PLH	LE	Q	$C_{1} = 50 \text{ pF}$		9.5	14.5	1	16.5	1	16.5	ns			
^t PHL		Q	C _L = 50 pF		9.5	14.5	1	16.5	1	16.5	115			
^t PZH	OE	Q	C _I = 50 pF		9.8	14.9	1	17	1	17	ns			
^t PZL	UE	Q			CL = 50 pr		9.8	14.9	1	17	1	17	115	
^t PHZ	OE	Q	C _L = 50 pF		9.5	13.2	1	15	1	15	ns			
^t PLZ	UE	Q	CL = 50 pr		9.5	13.2	1	15	1	15	115			

* On products compliant to MIL-PRF-38535, this parameter is ensured but not production tested.

switching characteristics over recommended operating free-air temperature range,
V_{CC} = 5 V ± 0.5 V (unless otherwise noted) (see Figure 1)

	FROM	то	LOAD	Тд =	25°C		SN54AHC	C16373	SN74AHC	16373							
PARAMETER	(INPUT)	(OUTPUT)	CAPACITANCE		ГҮР	MAX	MIN	MAX	MIN	MAX	UNIT						
^t PLH*	D	0	0. 15 pF		5	7.2	1	8.5	1	8.5	20						
^t PHL*	D	Q	Ŷ	Ŷ	Q	C _L = 15 pF		5	7.2	1	8.5	1	8.5	ns			
^t PLH [*]	LE	Q	C _I = 15 pF		4.9	7.2	1	8.5	1	8.5	ns						
^t PHL*	LL	ý	CL = 13 pr		4.9	7.2	1	8.5	1	8.5	115						
^t PZH [*]		0	C _L = 15 pF		5.5	8.1	1	9.5	1	9.5	ns						
^t PZL [*]	OE	Q	CL = 13 pr		5.5	8.1	1	9.5	1	9.5	115						
^t PHZ [*]	OE	Q	CL = 15 pF		5	7.2	1	8.5	1	8.5	ns						
^t PLZ [*]	OL		3	3	3	3	Y	~		CL = 13 pr		5	7.2	1	8.5	1	8.5
^t PLH	D	Q	C _I = 50 pF		6.5	9.2	1	10.5	1	10.5	20						
^t PHL	D	ý	CL = 50 pr		6.5	9.2	1	10.5	1	10.5	ns						
^t PLH	LE	Q	$C_{1} = 50 \text{ pc}$		6.4	9.2	1	10.5	1	10.5	ns						
^t PHL	LE	ý	C _L = 50 pF		6.4	9.2	1	10.5	1	10.5	115						
^t PZH	OE	Q	$C_{1} = 50 \text{ pF}$		7	10.1	1	11.5	1	11.5	ns						
^t PZL	OE	2	C _L = 50 pF		7	10.1	1	11.5	1	11.5	115						
^t PHZ	OE	Q	C _L = 50 pF		6.5	9.2	1	10.5	1	10.5	ns						
^t PLZ	UE	ý	0L = 00 bi		6.5	9.2	1	10.5	1	10.5	110						

* On products compliant to MIL-PRF-38535, this parameter is ensured but not production tested.

SCLS329B - MARCH 1996 - REVISED JUNE 1997

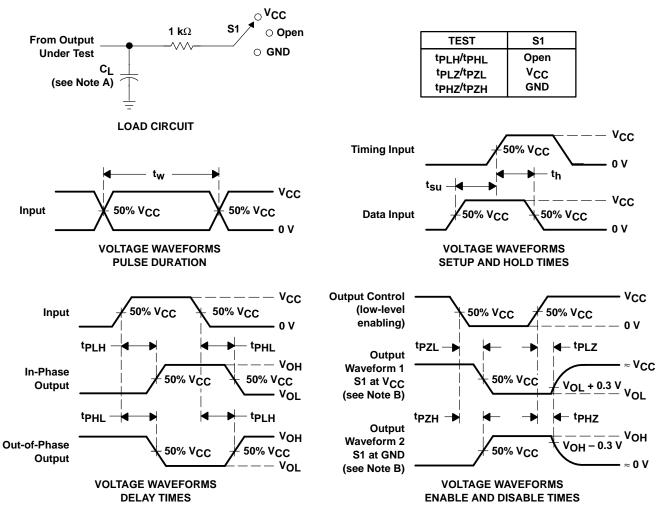
output-skew characteristics, $C_L = 50 \text{ pF}$ (see Note 4)

	vcc	SN74AH		
PARAMETER		T _A = 25°C	MIN MAX	UNIT
		MIN MAX		
tsk(o) Output skew	$3.3~V\pm0.3~V$	1.5	1.5	
t _{sk(o)} Output skew	$5~V\pm0.5~V$	1	1	ns

NOTE 4: Characteristics are determined during product characterization and ensured by design.

noise characteristics, V_{CC} = 5 V, C_L = 50 pF, T_A = 25^{\circ}C (see Note 5)

PARAMETER	SN74AHC16373			UNIT	
FARAMETER		MIN	TYP	MAX	UNIT
VOL(P)	Quiet output, maximum dynamic V _{OL}			0.8	V
V _{OL(V)}	Quiet output, minimum dynamic V _{OL}			-0.8	V
V _{OH(V)}	Quiet output, minimum dynamic V _{OH}	4.1			V
VIH(D)	High-level dynamic input voltage	3.5			V
VIL(D)	Low-level dynamic input voltage			1.5	V


NOTE 5: Characteristics are determined during product characterization and ensured by design for surface-mount packages only.

operating characteristics, V_{CC} = 5 V, T_A = 25°C

	PARAMETER	TEST CO	ONDITIONS	TYP	UNIT
C _{pd}	Power dissipation capacitance	No load,	f = 1 MHz	18	pF

SCLS329B - MARCH 1996 - REVISED JUNE 1997

PARAMETER MEASUREMENT INFORMATION

NOTES: A. Cl includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 1 MHz, Z_O = 50 Ω , t_r = 3 ns, t_f = 3 ns.

D. The outputs are measured one at a time with one input transition per measurement.

Figure 1. Load Circuit and Voltage Waveforms

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any semiconductor product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

TI warrants performance of its semiconductor products and related software to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

Certain applications using semiconductor products may involve potential risks of death, personal injury, or severe property or environmental damage ("Critical Applications").

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS.

Inclusion of TI products in such applications is understood to be fully at the risk of the customer. Use of TI products in such applications requires the written approval of an appropriate TI officer. Questions concerning potential risk applications should be directed to TI through a local SC sales office.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards should be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or services described herein. Nor does TI warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used.

Copyright © 1996, Texas Instruments Incorporated