5**П**

DBV PACKAGE (TOP VIEW)

Α

B 🛛 2

GND 3

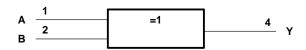
SCLS323D - MARCH 1996 - REVISED JUNE 1997

Vcc

- Operating Range 2-V to 5.5-V V_{CC}
- *EPIC*[™] (Enhanced-Performance Implanted CMOS) Process
- High Latch-Up Immunity Exceeds 250 mA Per JESD 17
- ESD Protection Exceeds 2000 V Per MIL-STD-883, Method 3015; Exceeds 200 V Using Machine Model (C = 200 pF, R = 0)
- Packaged in Plastic Small-Outline Transistor Package

description

The SN74AHC1G86 is a single 2-input exclusive-OR gate. The device performs the Boolean function $Y = A \oplus B$ or $Y = \overline{AB} + A\overline{B}$ in positive logic.


A common application is as a true/complement element. If one of the inputs is low, the other input is reproduced in true form at the output. If one of the inputs is high, the signal on the other input is reproduced inverted at the output.

The SN74AHC1G86 is characterized for operation from -40°C to 85°C.

INP	UTS	OUTPUT
Α	В	Y
L	L	L
L	н	Н
н	L	н
н	Н	L

FUNCTION TABLE

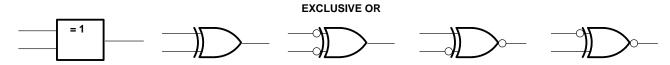
logic symbol[†]

[†] This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

EPIC is a trademark of Texas Instruments Incorporated.

PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas instruments standard warranty. Production processing does not necessarily include testing of all parameters.

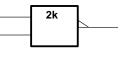


Copyright © 1997, Texas Instruments Incorporated

SCLS323D - MARCH 1996 - REVISED JUNE 1997

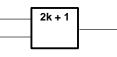
exclusive-OR logic

An exclusive-OR gate has many applications, some of which can be represented better by alternative logic symbols.


These are five equivalent exclusive-OR symbols valid for an SN74AHC1G86 gate in positive logic; negation may be shown at any two ports.

LOGIC-IDENTITY ELEMENT

The output is active (low) if all inputs stand at the same


logic level (i.e., A = B).

EVEN-PARITY ELEMENT

The output is active (low) if an even number of inputs (i.e., 0 or 2) are active.

ODD-PARITY ELEMENT

The output is active (high) if an odd number of inputs (i.e., only 1 of the 2) are active.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)[†]

Supply voltage range, V _{CC}	–0.5 V to 7 V
Input voltage range, V _I (see Note 1)	–0.5 V to 7 V
Output voltage range, V _O (see Note 1)	–0.5 V to V _{CC} + 0.5 V
Input clamp current, I _{IK} (V _I < 0)	
Output clamp current, I_{OK} ($V_O < 0$ or $V_O > V_{CC}$)	±20 mA
Continuous output current, $I_O (V_O = 0 \text{ to } V_{CC})$	±25 mA
Continuous current through V _{CC} or GND	±50 mA
Package thermal impedance, θ_{JA} (see Note 2)	347°C/W
Storage temperature range, T _{stg}	–65°C to 150°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

2. The package thermal impedance is calculated in accordance with JESD 51.

SCLS323D - MARCH 1996 - REVISED JUNE 1997

recommended operating conditions (see Note 3)

			MIN	MAX	UNIT
VCC	Supply voltage		2	5.5	V
	V _{CC} = 2 V		1.5		
VIH	High-level input voltage	$V_{CC} = 3 V$	2.1		V
		$V_{CC} = 5.5 V$	3.85		
	V _{CC} = 2 VLow-level input voltage $V_{CC} = 3 V$	$V_{CC} = 2 V$		0.5	
VIL		$V_{CC} = 3 V$		0.9	V
		V _{CC} = 5.5 V		1.65	
VI	Input voltage		0	5.5	V
Vo	Output voltage		0	VCC	V
		$V_{CC} = 2 V$		-50	μA
ЮН	High-level output current	$V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}$		-4	mA
		V_{CC} = 5 V ± 0.5 V		-8	
		$V_{CC} = 2 V$		50	μA
IOL	Low-level output current $V_{CC} = 3.3$		4	~ ^	
		V_{CC} = 5 V ± 0.5 V		8	mA
A+/A.v	Input transition rise or fall rate	V_{CC} = 3.3 V ± 0.3 V		100	ns/V
Δt/Δv	Input transition rise or fall rate	V_{CC} = 5 V ± 0.5 V		20	115/ V
ТA	Operating free-air temperature		-40	85	°C

NOTE 3: Unused inputs must be held high or low to prevent them from floating.

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

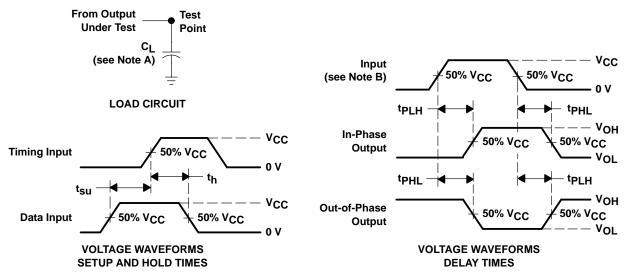
PARAMETER	TEST CONDITIONS	Vee	T _A = 25°C			MIN		UNIT
PARAMETER	TEST CONDITIONS	Vcc	MIN	TYP	MAX	IVIIIN	MAX	UNIT
		2 V	1.9	2		1.9		v
V _{OH}	I _{OH} = -50 μA	3 V	2.9	3		2.9		
		4.5 V	4.4	4.5		4.4		
	I _{OH} = -4 mA	3 V	2.58			2.48		
	I _{OH} = -8 mA	4.5 V	3 V 2.58 2.48 .5 V 3.94 3.8 2 V 0.1 0.1 3 V 0.1 0.1					
					0.1		0.1	
	I _{OL} = 50 μA	3 V			0.1		0.1	
VOL		4.5 V			0.1		0.1	V
	I _{OL} = 4 mA	3 V			0.36		0.44	
	I _{OL} = 8 mA	4.5 V			0.36		0.44	
II A or B inputs	$V_I = V_{CC}$ or GND	5.5 V			±0.1		±1	μA
ICC	$V_{I} = V_{CC} \text{ or } GND, \qquad I_{O} = 0$	5.5 V			1		10	μA
Ci	$V_I = V_{CC}$ or GND	5 V		4	10		10	pF

SCLS323D - MARCH 1996 - REVISED JUNE 1997

switching characteristics over recommended operating free-air temperature range, V_{CC} = 3.3 V \pm 0.3 V (unless otherwise noted) (see Figure 1)

	PARAMETER	FROM	то	LOAD	T _A = 25°C			MIN	мах	UNIT
	FARAMETER	(INPUT)	(OUTPUT)	CAPACITANCE	MIN	TYP	MAX		WAA	UNIT
ſ	^t PLH	A or P	Y			7	11	1	13	ns
	^t PHL	A or B		C _L = 15 pF		7	11	1	13	
ſ	^t PLH	A or D	Y	C _L = 50 pF		9.5	14.5	1	16.5	
ſ	^t PHL	A or B				9.5	14.5	1	16.5	ns

switching characteristics over recommended operating free-air temperature range, V_{CC} = 5 V \pm 0.5 V (unless otherwise noted) (see Figure 1)


PARAMETER	FROM	то	LOAD	T _A = 25°C			MIN	мах	UNIT
PARAMETER	(INPUT)	(OUTPUT)	CAPACITANCE	MIN	TYP	MAX		IVIAA	UNIT
^t PLH	A or B	Y	C _L = 15 pF		4.8	6.8	1	8	20
^t PHL					4.8	6.8	1	8	ns
^t PLH	A or B	Y	C _L = 50 pF		6.3	8.8	1	10	20
^t PHL					6.3	8.8	1	10	ns

operating characteristics, V_{CC} = 5 V, T_A = 25°C

PARAMETER		TEST CO	ONDITIONS	TYP	UNIT
C _{pd}	Power dissipation capacitance	No load,	f = 1 MHz	18	pF

SCLS323D - MARCH 1996 - REVISED JUNE 1997

PARAMETER MEASUREMENT INFORMATION

NOTES: A. CL includes probe and jig capacitance.

B. All input pulses are supplied by generators having the following characteristics: PRR \leq 1 MHz, Z_O = 50 Ω , t_r = 3 ns, t_f = 3 ns.

C. The output is measured with one input transition per measurement.

Figure 1. Load Circuit and Voltage Waveforms

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any semiconductor product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

TI warrants performance of its semiconductor products and related software to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

Certain applications using semiconductor products may involve potential risks of death, personal injury, or severe property or environmental damage ("Critical Applications").

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS.

Inclusion of TI products in such applications is understood to be fully at the risk of the customer. Use of TI products in such applications requires the written approval of an appropriate TI officer. Questions concerning potential risk applications should be directed to TI through a local SC sales office.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards should be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or services described herein. Nor does TI warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used.

Copyright © 1996, Texas Instruments Incorporated