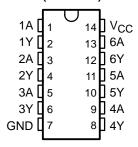
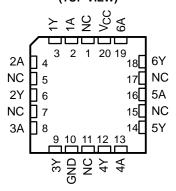
SCLS246H - OCTOBER 1995 - REVISED JUNE 1997


- Inputs Are TTL-Voltage Compatible
- EPIC™ (Enhanced-Performance Implanted CMOS) Process
- High Latch-Up Immunity Exceeds 250 mA Per JESD 17
- ESD Protection Exceeds 2000 V Per MIL-STD-883, Method 3015; Exceeds 200 V Using Machine Model (C = 200 pF, R = 0)
- Package Options Include Plastic Small-Outline (D), Shrink Small-Outline (DB), Thin Very Small-Outline (DGV), Thin Shrink Small-Outline (PW), and Ceramic Flat (W) Packages, Ceramic Chip Carriers (FK), and Standard Plastic (N) and Ceramic (J) 300-mil DIPs

description


The 'AHCT14 contain six independent inverters. These devices perform the Boolean function $Y = \overline{A}$.

Each circuit functions as an independent inverter, but because of the Schmitt action, the inverters have different input threshold levels for positive-going (V_{T+}) and for negative-going (V_{T-}) signals.

SN54AHCT14 . . . J OR W PACKAGE SN74AHCT14 . . . D, DB, DGV, N, OR PW PACKAGE (TOP VIEW)

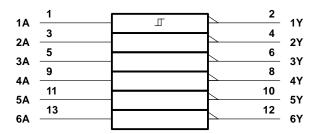
SN54AHCT14 . . . FK PACKAGE (TOP VIEW)

NC - No internal connection

The SN54AHCT14 is characterized for operation over the full military temperature range of –55°C to 125°C. The SN74AHCT14 is characterized for operation from –40°C to 85°C.

FUNCTION TABLE (each inverter)

INPUT A	OUTPUT Y
Н	L
L	Н


Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

EPIC is a trademark of Texas Instruments Incorporated.

SCLS246H - OCTOBER 1995 - REVISED JUNE 1997

logic symbol†

[†] This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12. Pin numbers shown are for the D, DB, DGV, J, N, PW, and W packages.

logic diagram (positive logic)

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)[‡]

Supply voltage range, V _{CC}		0.5 V to 7 V
Input voltage range, V _I (see Note 1)		
Output voltage range, VO (see Note 1)		
Input clamp current, $I_{IK}(V_I < 0)$		
Output clamp current, IOK (VO < 0 or VO > VCO		
Continuous output current, $I_O(V_O = 0 \text{ to } V_{CC})$		
Continuous current through V _{CC} or GND		
Package thermal impedance, θ _{JA} (see Note 2)): D package	127°C/W
	DB package	158°C/W
	DGV package	182°C/W
	N package	78°C/W
	PW package	170°C/W
Storage temperature range, T _{stg}		–65°C to 150°C

[‡] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

- NOTES: 1. The input and output voltage ratings may be exceeded if the input and output current ratings are observed.
 - 2. The package thermal impedance is calculated in accordance with JESD 51, except for through-hole packages, which use a trace length of zero.

recommended operating conditions (see Note 3)

		SN54AHCT14		SN74AI	HCT14	UNIT
		MIN	MAX	MIN	MAX	UNII
Vcc	Supply voltage	4.5	5.5	4.5	5.5	V
VIH	High-level input voltage	2.1	EN	2.1		V
V _{IL}	Low-level input voltage		0.5		0.5	V
٧ _I	Input voltage	0.4	5.5	0	5.5	V
VO	Output voltage	0	VCC	0	VCC	V
IOH	High-level output current	700	-8		-8	mA
loL	Low-level output current	Sp.	8		8	mA
T _A	Operating free-air temperature	– 55	125	-40	85	°C

NOTE 3: Unused inputs must be held high or low to prevent them from floating.

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

DADAMETED	TEST COMPITIONS	V	T,	Δ = 25°C	;	SN54AI	HCT14	SN74A	HCT14	LINUT
PARAMETER	TEST CONDITIONS	VCC	MIN	TYP	MAX	MIN	MAX	MIN	MAX	UNIT
V _{T+}		4.5 V			1.9		1.9		1.9	V
Positive-going input threshold voltage		5.5 V			2.1		2.1		2.1	٧
V _T _		4.5 V	0.5			0.5		0.5		V
Negative-going input threshold voltage		5.5 V	0.6			0.6	FW	0.6		V
ΔVτ		4.5 V	0.4		1.4	0.4	1.4	0.4	1.4	V
Hysteresis (V _{T+} – V _{T-})		5.5 V	0.4		1.5	0.4 4	1.5	0.4	1.5	V
Vari	I _{OH} = -50 μA	4.5 V	4.4	4.5		4.4	,	4.4		V
VOH	I _{OH} = -8 mA	4.5 V	3.94			3.8		3.8		V
Va	I _{OL} = 50 μA	4.5 V			0.1	P. P.	0.1		0.1	V
V _{OL}	I _{OL} = 8 mA	4.5 V			0.36		0.44		0.44	V
IĮ	$V_I = V_{CC}$ or GND	5.5 V			±0.1		±1		±1	μΑ
lcc	$V_I = V_{CC}$ or GND, $I_O = 0$	5.5 V			2		20		20	μΑ
ΔICC [†]	One input at 3.4 V, Other inputs at V _{CC} or GND	5.5 V			1.35		1.5		1.5	mA
Ci	V _I = V _{CC} or GND	5 V		2	10				10	pF

[†] This is the increase in supply current for each input at one of the specified TTL voltage levels rather than 0 V or V_{CC}.

switching characteristics over recommended operating free-air temperature range V_{CC} = 5 V \pm 0.5 V (unless otherwise noted) (see Figure 1)

PARAMETER	RAMETER FROM TO LOAD CAPACITANCE CAPACITANCE		T,	Վ = 25° C	;	MIN	MAX	UNIT		
	(01)	(0011 01)	(6611.61)	OAI AGITANGE	MIN	TYP	MAX	IVIIIV	WAX	
^t PLH*		Y	C _I = 15 pF		4	7.	1	8	no	
tPHL*	А		CL = 15 pr		4	7	<i>S</i> ¹ 1	8	ns	
t _{PLH}	٨	V	C 50 pF		5.5	8	1	9	ne	
t _{PHL}	А	ſ	C _L = 50 pF		5.5	8	1	9	ns	

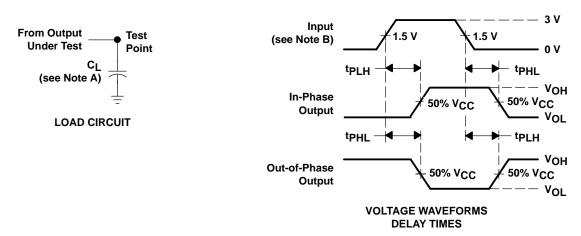
^{*} On products compliant to MIL-PRF-38535, this parameter is ensured but not production tested.

SCLS246H - OCTOBER 1995 - REVISED JUNE 1997

switching characteristics over recommended operating free-air temperature range V_{CC} = 5 V \pm 0.5 V (unless otherwise noted) (see Figure 1)

			[SN74AHCT14					
PARAMETER	FROM (INPUT)	TO (OUTPUT)	LOAD UT) CAPACITANCE	T _A = 25°C			MIN	MAX	UNIT	
	(1141-01)			MIN	TYP	MAX	IVIIIV	WAA		
t _{PLH}	A	Y	C _L = 15 pF		4	7	1	8	ns	
^t PHL			1	OL = 13 pr		4	7	1	8	115
^t PLH	^	V	V	C: - 50 pE		5.5	8	1	9	nc
^t PHL	А	ī	C _L = 50 pF		5.5	8	1	9	ns	

noise characteristics, $V_{CC} = 5 \text{ V}$, $C_L = 50 \text{ pF}$, $T_A = 25^{\circ}\text{C}$ (see Note 4)


	PARAMETER		SN74AHCT14			
			TYP	MAX	UNIT	
V _{OL(P)}	Quiet output, maximum dynamic V _{OL}		0.9		V	
V _{OL} (V)	Quiet output, minimum dynamic V _{OL}		-0.7		V	
VOH(V)	Quiet output, minimum dynamic VOH		4.3		V	
VIH(D)	High-level dynamic input voltage	2.1			V	
V _{IL(D)}	Low-level dynamic input voltage			0.5	V	

NOTE 4: Characteristics are determined during product characterization and ensured by design for surface-mount packages only.

operating characteristics, V_{CC} = 5 V, T_A = 25°C

	PARAMETER		ONDITIONS	TYP	UNIT
C _{pd}	Power dissipation capacitance	No load,	f = 1 MHz	12	pF

PARAMETER MEASUREMENT INFORMATION

NOTES: A. C_L includes probe and jig capacitance.

- B. Input pulses are supplied by generators having the following characteristics: PRR \leq 1 MHz, $Z_O = 50~\Omega$, $t_f = 3~ns$, $t_f = 3~ns$.
- C. The outputs are measured one at a time with one input transition per measurement.

Figure 1. Load Circuit and Voltage Waveforms

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any semiconductor product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

TI warrants performance of its semiconductor products and related software to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

Certain applications using semiconductor products may involve potential risks of death, personal injury, or severe property or environmental damage ("Critical Applications").

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS.

Inclusion of TI products in such applications is understood to be fully at the risk of the customer. Use of TI products in such applications requires the written approval of an appropriate TI officer. Questions concerning potential risk applications should be directed to TI through a local SC sales office.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards should be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or services described herein. Nor does TI warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used.

Copyright © 1996, Texas Instruments Incorporated