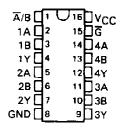
SN54HC257, SN54HC258, SN74HC257, SN74HC258 QUAD 2-LINE TO 1-LINE DATA SELECTORS/MULTIPLEXERS WITH 3-STATE OUTPUTS

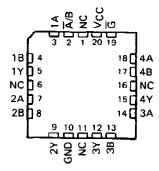
SCLS224 D2684, DECEMBER 1982-REVISED JUNE 1989

- High-Current 3-State Outputs Interface
 Directly with System Bus or Can Drive Up to 15 LSTTL Loads
- Provides Bus Interface from Multiple Sources in High Performance Systems
- Package Options Include Plastic "Small Outline" Packages, Ceramic Chip Carriers, and Standard Plastic and Ceramic 300-mil DIPs
- Dependable Texas Instruments Quality and Reliability

description


These devices are designed to multiplex signals from four-bit data sources to four-output data lines in bus-organized systems. The 3-state outputs will not load the data lines when the output control pin (G) is at a high-logic level.

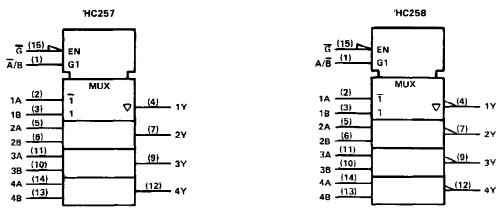
The SN54HC257 and SN54HC258 are characterized for operation over the full military temperature range of $-55\,^{\circ}\text{C}$ to $125\,^{\circ}\text{C}$. The SN74HC257 and SN74HC258 are characterized for operation from $-40\,^{\circ}\text{C}$ to $85\,^{\circ}\text{C}$.


FUNCTION TABLE

	INPUTS			OUTPUT Y				
OUTPUT	SELECT	DA	TA					
CONTROL	A/B	A	В	′HC257	'HC258			
Н	Х	Х	Х	2	2			
L	L	L	X	L	н			
} L	L	Н	X	Н	L '			
L	н	X	L	L	н			
<u> </u>	н	х	н	Н	<u> </u>			

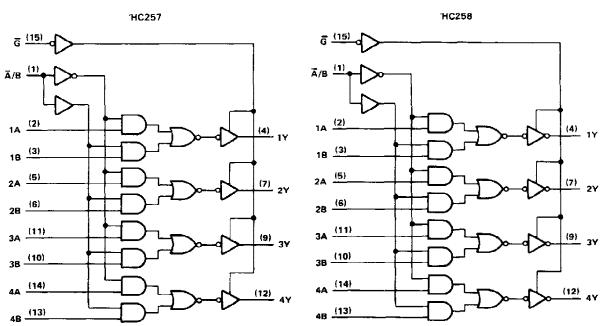
SN54HC257, SN54HC258 . . . J PACKAGE SN74HC257, SN74HC258 . . . D[†] OR N PACKAGE (TOP VIEW)

\$N54HC257, \$N54HC258 . . . FK PACKAGE (TOP VIEW)



NC-No internal connection

[†]Contact the factory for D availability


SN54HC257, SN54HC258, SN74HC257, SN74HC258 QUAD 2-LINE TO 1-LINE DATA SELECTORS/MULTIPLEXERS WITH 3-STATE OUTPUTS

logic symbols†

[†]These symbols are in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

logic diagrams (positive logic)

Pin numbers shown are for D, J, and N packages.

SN54HC257, SN54HC258, SN74HC257, SN74HC258 QUAD 2-LINE TO 1-LINE DATA SELECTORS/MULTIPLEXERS WITH 3-STATE OUTPUTS

absolute maximum ratings over operating free-air temperature range t

Supply voltage, VCC
Input clamp current, IK (VI < 0 or VI > VCC) ±20 mA
Output clamp current, IOK (VO < 0 or VO > VCC)
Continuous output current, IQ (VO = 0 to VCC) ±35 mA
Continuous current through VCC or GND pins
Lead temperature 1,6 mm (1/16 in) from case for 60 s: FK or J package 300°C
Lead temperature 1,6 mm (1/16 in) from case for 10 s: D or N package 260 °C
Storage temperature range65°C to 150°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

recommended operating conditions

			SN54HC257 SN54HC258			SN74HC257 SN74HC258			UNIT
			MiN	NOM	MAX	MIN	MOM	MAX	
VCC Supply voltage			2	5	6	2	5	6	٧
۷ін	High-level input voltage	V _{CC} = 2 V V _{CC} = 4.5 V	1.5 3.15			1.5 3.15		·	٧
		∨ _{CC} = 6 ∨	4.2			4.2		_	
		V _{CC} = 2 V	0		0.3	0		0.3	
V_{IL}	Low-level input voltage	V _{CC} = 4.5 V) 0		0.9	0		0.9	V
		V _{CC} = 6 V	0		1.2	0		1.2	
Vį	Input voltage		0	_	Vcc_	0		VCC	V
Vo	Output voltage		0		Vcc	0		Vcc	٧
		V _{CC} = 2 V	0	<u> </u>	1000	0	····	1000	
tt	Input transition (rise and fall) times	$V_{CC} = 4.5 \text{ V}$	0		500	0		500	ns
		V _{CC} = 6 V	0		400	0		400	
TA	Operating free-air temperature		- 55		125	-40		85	°C

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS	vcc	TA = 25°C			\$N54HC257 \$N54HC258		SN74HC257 SN74HC258		UNIT
			MIN	TYP	MAX	MIN	MAX	MIN	MAX	
		2 V	1.9	1.998		1.9		1.9		
	$V_{\parallel} = V_{\parallel} H$ or $V_{\parallel} L$, $I_{OH} = -20 \mu A$	4.5 V	4.4	4.499		4.4		4.4		
V _{OH}		6 V	5.9	5.999		5.9		5.9		٧
Ī	$V_{\parallel} = V_{\parallel H}$ or $V_{\parallel L}$, $I_{OH} = -6$ mA	4.5 V	3.98	4.30		3.7		3.84		
	VI = VIH or VIL. IOH = -7.8 mA	6 V	5.48	5.80		5.2		5.34		
		2 V		0.002	0.1		0.1		0.1	
	$V_I = V_{IH}$ or V_{IL} , $I_{OL} = 20 \mu A$	4.5 V		0.001	0.1	ŀ	0.1	1	0.1	
VOL		6 V		0.001	0.1		0.1		0.1	٧
	V _I = V _{IH} or V _{IL} , I _{OL} = 6 mA	4.5 V		0.17	0.26		0.4		0.33	
	VI = VIH or VIL. IOL = 7.8 mA	4.5 V 0.001 0.1 0.1 0. 6 V 0.001 0.1 0.1 0. 4.5 V 0.17 0.26 0.4 0.3	0.33							
11	VI = VCC or 0	6 V		±0.1	±100		± 1000		± 1000	nΑ
^I OZ	VO = VCC or 0, VI = VIH or VIL	6 V		±0.01	±0.5		± 10	1	±5	μΑ
^I CC	V _I = V _{CC} or 0, I _O = 0	6 V			8		160		80	μΑ
c _i		2 to 6 V		3	10		10		10	ρF

SN54HC257, SN74HC257 QUAD 2-LINE TO 1-LINE DATA SELECTORS/MULTIPLEXERS WITH 3-STATE OUTPUTS

switching characteristics over recommended operating free-air temperature range (unless otherwise noted), $C_L = 50 \text{ pF}$ (see Note 1)

PARAMETER	FROM	το	J v	TA	= 25	°C	SN54	HC257	SN74	HC257	
PARAMETER	(INPUT)	(OUTPUT)	VCC	MIN	TYP	MAX	MIN	MAX	MIN	MAX	UNIT
			2 V		50	100		150	Ī <u> </u>	125	
t _{pd}	A or B	Any Y	4.5 V		10	20	•	30		25	ns
			8 V		9	. 17		25		21	
			2 V		50	100		150		125	
^t pd	Ā/B	Any Y	4.5 V		10	20		30		25	กร
			6 V		9	17		25		21	
Ĭ.			2 V		75	150		225		190	
ten	ত্ত	Any Y	4.5 V		15	30		45		38	ns
Ī			6 V		13	26		38		32	
			2 V		75	150		225		190	
^t dis	ব্র	Апу Ү	4.5 V		15	30		45		38	ns
			6 V		13	26		38		32	l
			2 V		28	60		90		75	
tt		Any	4.5 V		8	12		18		15	ns
			6 V		6	10		15		13	

1 (Power dissipation capacitance per multiplexer	No load T _A = 25°C	40 - E A
l ∽od l	I was dissibation capacitatics bet incitiblished	NO 1080, IA = 25°C	I 40 pr typ
		<u> </u>	<u> </u>

switching characteristics over recommended operating free-air temperature range (unless otherwise noted), $C_L = 150 \, \text{pF}$ (see Note 1)

PARAMETER	FROM	то	V	T ₄	= 25	°C	SN54	HC257	\$N74	HC267	
PARAMETER	(INPUT)	(OUTPUT)	Vcc	MIN	TYP	MAX	MIN	MAX	MIN	MAX	UNIT
			2 V		75	150		245		190	
[†] pd	A or B	Any Y	4.5 V		15	30		45		38	ns
			6 V		13	26		38		32	
		T -	2 V		75	150		245		190	
^t pd	Ā/B	Any Y	4.5 V		15	30		45		38	n.s
			6 V	1.	13	26		38		32	32
			2 V		100	200		300		250	
^t en	ত্ত	Any Y	4.5 V	1	24	40		60		50	ns
			6 V		18	34		51		43	
			2 V		45	210		315		265	
tt		Any	4.5 V		17	42	1	63		53	กร
			6 V		13	36		53		45	

NOTE 1: Load circuits and voltage waveforms are shown in Section 1.

QUAD 2-LINE TO 1-LINE DATA SELECTORS/MULTIPLEXERS WITH 3-STATE OUTPUTS

switching characteristics over recommended operating free-air temperature range (unless otherwise noted), $C_L = 50$ pF (see Note 1)

	FROM	TO		TA	= 25	°C	SN54	HC258	SN74HC258		UNIT
PARAMETER	(INPUT)	(OUTPUT)	VCC	MIN	TYP	MAX	MIN	MAX	MIN	MAX	UNIT
			2 V	T	60	100		150]	125	
tpd	A or B	Any Y	4.5 V		13	20		30		25	ns
1			6 V		12	17		25	İ	21	
			2 V		60	115		175		145	
t _{pd} Ā/B	Ã/B	Any Y	4.5 V		13	23		35		29	ns
			6 V		12	20		30	l	25	
			2 V		70	150		225		190	
ten	ত্ত	Any Y	4.5 V	ł	15	30		45	•	38	ns
J.,			6 V	İ	13	26		38	•	32	
			2 V		75	150		225		190	
^T dis	G	Any Y	4.5 V		15	30	l	45	ĺ	38	ns
			6 V		13	26		38	1	32	
			2 V	1	28	60		90		75	
tt		Any	4.5 V	1	8	12		18		15	กร
•			6 V	1	6	10		15	1	13	

	De une dissipulation accessioners and multipleures	Malage T. DECC	40
Lod	I Power dissipation capacitance per multiplexer	I No load, l⊾ = 25°C	E 40 pF tvp /
-pu	1		

switching characteristics over recommended operating free-air temperature range (unless otherwise noted), $C_L = 150$ pF (see Note 1)

54544FTF5	FROM	то	3/	TA	= 25	°C	SN54HC258		SN74HC258		
PARAMETER	(INPUT)	(OUTPUT)	Vcc	MIN	TYP	MAX	MIN	MAX	MIN	MAX	UNIT
			2 V	1	95	150		245		190	
tpd	A or B	Any Y	4.5 V		23	30	-	45	•	38	ns
			6 V		21	26		38		32	
			2 V		95	165		240		210	
tpd	Ā/B	Any Y	4.5 V	1	23	33	İ	48	l	42	ns
·			6 V		21	28	l	41	İ	36	
			2 V		100	200		300		250	
ten	ਫ	Any Y	4.5 V		24	40	}	60	1	50	ns
			6 V		18	34		51		43	
			2 V		45	210		315		265	
tt		Any	4.5 V		17	42		63		53	กร
Ī			6 V		13	36		53		45	

NOTE 1: Load circuits and voltage waveforms are shown in Section 1.

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any semiconductor product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

TI warrants performance of its semiconductor products and related software to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

Certain applications using semiconductor products may involve potential risks of death, personal injury, or severe property or environmental damage ("Critical Applications").

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS.

Inclusion of TI products in such applications is understood to be fully at the risk of the customer. Use of TI products in such applications requires the written approval of an appropriate TI officer. Questions concerning potential risk applications should be directed to TI through a local SC sales office.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards should be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or services described herein. Nor does TI warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used.

Copyright © 1996, Texas Instruments Incorporated