SN54LV374, SN74LV374 OCTAL EDGE-TRIGGERED D-TYPE FLIP-FLOPS WITH 3-STATE OUTPUTS SCLS197B – FEBRUARY 1993 – REVISED APRIL 1996

EPIC ™ (Enhanced-Performance Implanted CMOS) 2-µ Process

- Typical V_{OLP} (Output Ground Bounce)
 < 0.8 V at V_{CC}, T_A = 25°C
- Typical V_{OHV} (Output V_{OH} Undershoot)
 > 2 V at V_{CC}, T_A = 25°C
- ESD Protection Exceeds 2000 V Per MIL-STD-883C, Method 3015; Exceeds 200 V Using Machine Model (C = 200 pF, R = 0)
- Latch-Up Performance Exceeds 250 mA Per JEDEC Standard JESD-17
- Package Options Include Plastic Small-Outline (DW), Shrink Small-Outline (DB), Thin Shrink Small-Outline (PW), Ceramic Flat (W) Packages, Chip Carriers (FK), and (J) 300-mil DIPs

description

These octal edge-triggered D-type flip-flops are designed for 2.7-V to 5.5-V $\rm V_{CC}$ operation.

The 'LV374 feature 3-state outputs designed specifically for driving highly capacitive or relatively low-impedance loads. These devices are particularly suitable for implementing buffer registers, I/O ports, bidirectional bus drivers, and working registers.

SN74LV374DB, DW, OR PW PACKAGE (TOP VIEW)										
OE 1Q 1D 2D 2Q 3Q 3D 4D 4D 4Q GND	$ \begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \end{bmatrix} $	20] 19] 18] 17] 16] 15] 14] 13] 12] 11]	V _{CC} 8Q 8D 7D 7Q 6Q 6D 5D 5Q CLK							

SN54LV374 . . . J OR W PACKAGE

SN54LV374 . . . FK PACKAGE (TOP VIEW)

	10 0 <u>1</u> 80 80
2D 2Q 3Q 3D 4D	3 2 1 20 19 8D 4 18 8D 5 17 7D 6 16 7Q 7 15 6Q 8 14 6D 9 10 11 12
	50 40 50 50 50 50 50 50 50 50 50 50 50 50 50 5

On the positive transition of the clock (CLK) input, the Q outputs are set to the logic levels set up at the data (D) inputs.

A buffered output-enable (\overline{OE}) input can be used to place the eight outputs in either as normal logic state (high or low logic levels) or high-impedance state. In the high-impedance state, the outputs neither load nor drive the bus lines significantly. The high-impedance state and the increased drive provide the capability to drive bus lines without need for interface or pullup components.

OE does not affect internal operations of the latch. Old data can be retained or new data can be entered while the outputs are in the high-impedance state.

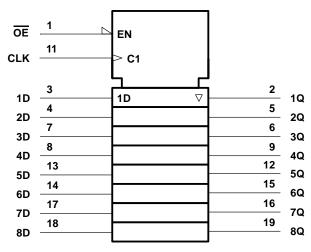
The SN74LV374 is available in TI's shrink small-outline package (DB), which provides the same I/O pin count and functionality of standard small-outline packages in less than half the printed-circuit-board area.

The SN54LV374 is characterized for operation over the full military temperature range of –55°C to 125°C. The SN74LV374 is characterized for operation from –40°C to 85°C.

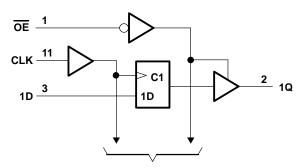
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

EPIC is a trademark of Texas Instruments Incorporated

UNLESS OTHERWISE NOTED this document contains PRODUCTION DATA information current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.



Copyright © 1996, Texas Instruments Incorporated


SCLS197B - FEBRUARY 1993 - REVISED APRIL 1996

FUNCTION TABLE (each flip-flop)										
	INPUTS	OUTPUT								
OE	CLK	D	Q							
L	\uparrow	Н	Н							
L	\uparrow	L	L							
L	L	Х	Q ₀							
Н	Х	Х	Z							

logic symbol[†]

logic diagram (positive logic)

To Seven Other Channels

⁺ This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

Pin numbers shown are for DB, DW, J, PW, and W packages.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)[‡]

Supply voltage range, V_{CC} Input voltage range, V_I (see Note 1)	$\begin{array}{c} 0.5 \mbox{ V to } V_{CC} + 0.5 \mbox{ V} \\ 0.5 \mbox{ V to } V_{CC} + 0.5 \mbox{ V} \\ \dots & \pm 20 \mbox{ mA} \\ \dots & \pm 50 \mbox{ mA} \\ \dots & \pm 35 \mbox{ mA} \\ \dots & \pm 70 \mbox{ mA} \\ \dots & \dots & 0.6 \mbox{ W} \\ \dots & \dots & 1.6 \mbox{ W} \end{array}$
PW package	

[‡] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

- 2. This value is limited to 7 V maximum.
- 3. The maximum package power dissipation is calculated using a junction temperature of 150°C and a board trace length of 750 mils.

SCLS197B - FEBRUARY 1993 - REVISED APRIL 1996

recommended operating conditions (see Note 4)

			SN54L	.V374	374 SN74LV374		LINUT	
			MIN	MAX	MIN	MAX	UNIT	
VCC	Supply voltage		2.7	5.5	2.7	5.5	V	
V	High-level input voltage	$V_{CC} = 2.7 V \text{ to } 3.6 V$	2		2		V	
VIH		$V_{CC} = 4.5 V \text{ to } 5.5 V$	3.15		3.15		v	
\/	Low-level input voltage	$V_{CC} = 2.7 V \text{ to } 3.6 V$		0.8		0.8	V	
VIL		V_{CC} = 4.5 V to 5.5 V		1.65		1.65	v	
VI	Input voltage		0	Vcc	0	VCC	V	
VO	Output voltage		0	VCC	0	VCC	V	
lau		$V_{CC} = 2.7 V \text{ to } 3.6 V$	00	-8		-8		
ЮН	High-level output current	V_{CC} = 4.5 V to 5.5 V	A 0	-16		-16	mA	
1		V _{CC} = 2.7 V to 3.6 V	Q	8		8	~ ^	
IOL	Low-level output current	V_{CC} = 4.5 V to 5.5 V		16		16	mA	
$\Delta t/\Delta v$	Input transition rise or fall rate		0	100	0	100	ns/V	
Τ _Α	Operating free-air temperature		-55	125	-40	85	°C	

NOTE 4: Unused inputs must be held high or low to prevent them from floating.

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

DADAMETED		+	SN	154LV37	'4	SN				
PARAMETER	TEST CONDITIONS	vcc [†]	MIN	TYP	MAX	MIN	TYP	MAX	UNIT	
	I _{OH} = -100 μA	MIN to MAX	V _{CC} -0	.2		V _{CC} -0.	.2			
VOH	I _{OH} = – 8 mA	3 V	2.4			2.4			V	
	I _{OH} = – 16 mA	4.5 V	3.6			3.6				
	I _{OL} = 100 μA	MIN to MAX			0.2			0.2		
V _{OL}	I _{OL} = 8 mA	3 V			0.4			0.4	V	
	I _{OL} = 16 mA	4.5 V			0.55			0.55		
1.	VI = V _{CC} or GND	3.6 V		11	l⁄ ±1			±1	μA	
tı		5.5 V		RE	±1			±1		
107		3.6 V		Q	±5			±5	μA	
loz	$V_{O} = V_{CC}$ or GND	5.5 V		S	±5			±5		
laa		3.6 V	20	Ň	20			20		
lcc	$V_{I} = V_{CC} \text{ or GND}, \qquad I_{O} = 0$	5.5 V	d'a		20			20	μA	
∆ICC	One input at V_{CC} – 0.6 V, Other inputs at V_{CC} or GND	3 V to 3.6 V			500			500	μA	
0		3.3 V		2.5			2.5		~F	
Ci	$V_I = V_{CC}$ or GND	5 V		3			3		pF	
C		3.3 V		7			7			
С _О	$V_{O} = V_{CC}$ or GND	5 V		8			8		pF	

[†] For conditions shown as MIN or MAX, use the appropriate values under recommended operating conditions.

SCLS197B - FEBRUARY 1993 - REVISED APRIL 1996

timing requirements over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

					SN54LV374						
				5 = 5 V 0.5 V	V _{CC} = ± 0.		V _{CC} =	2.7 V	UNIT		
			MIN	MAX	MIN	MAX	MIN	MAX			
fclock	Clock frequency		C	45	<u> </u>	40	0	35	MHz		
tw	Pulse duration, CLK high or low		g	0	10		13		ns		
t _{su}	Setup time before CLK^\uparrow	High or low	7	PR-	10	oR	11		ns		
t _h	Hold time, data after CLK^\uparrow		3	 2 	2	<	2		ns		

timing requirements over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

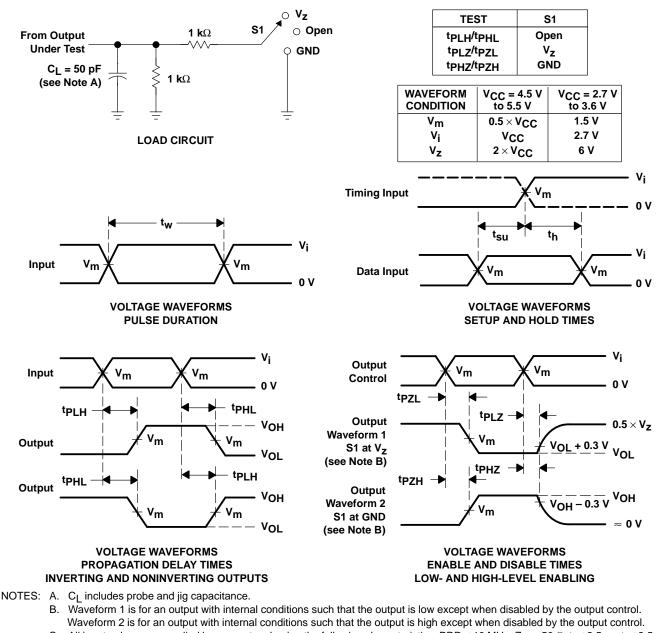
					SN74LV374						
			۲ <mark>۰۵</mark> کا ± 0.		= ۷ _{CC} ± 0.3		V _{CC} =	2.7 V	UNIT		
			MIN	MAX	MIN	MAX	MIN	MAX			
fclock	Clock frequency		0	45	0	40	0	35	MHz		
tw	Pulse duration, CLK high or low		9		10		13		ns		
t _{su}	Setup time before $CLK\uparrow$	High or low	7		10		11		ns		
t _h	Hold time, data after CLK^\uparrow		3		2		2		ns		

switching characteristics over recommended operating free-air temperature range, C_L = 50 pF (unless otherwise noted) (see Figure 1))

	FROM	70	SN54LV374								
PARAMETER	FROM TO (INPUT) (OUTPUT)		V_{CC} = 5 V ± 0.5 V		V_{CC} = 3.3 V \pm 0.3 V			V _{CC} = 2.7 V		UNIT	
			MIN	TYP	MAX	MIN	TYP	MAX	MIN	MAX	
fmax			45	80		40	70		35		MHz
^t pd	CLK	Q		11	19	C.N.	15	24	EN	29	ns
ten	OE	Q		10	20		13	24	2.	28	ns
^t dis	OE	Q		8	21		12	24		29	ns

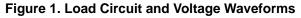
switching characteristics over recommended operating free-air temperature range, CL = 50 pF (unless otherwise noted) (see Figure 1)

			SN74LV374								
PARAMETER	FROM (INPUT)	TO (OUTPUT)	V _{CC} :	V_{CC} = 5 V \pm 0.5 V			$V_{\mbox{CC}}$ = 3.3 V \pm 0.3 V			V _{CC} = 2.7 V	
			MIN	TYP	MAX	MIN	TYP	MAX	MIN	MAX	
fmax			45	80		40	70		35		MHz
^t pd	CLK	Q		11	19		15	24		29	ns
ten	OE	Q		10	20		13	24		28	ns
^t dis	OE	Q		8	21		12	24		29	ns


SN54LV374, SN74LV374 OCTAL EDGE-TRIGGERED D-TYPE FLIP-FLOPS WITH 3-STATE OUTPUTS SCLS197B – FEBRUARY 1993 – REVISED APRIL 1996

operating characteristics, $T_A = 25^{\circ}C$

	PARAMETER	TEST CONDITIONS	Vcc	TYP	UNIT	
	Outputs enabled		3.3 V	52		
	Power dissipation canacitance per flip flep	Per dissipation capacitance per flip-flop Outputs disabled $C_1 = 50 \text{ pF}, \text{ f} = 10 \text{ MHz}$		34	рF	
C _{pd}	Power dissipation capacitance per hip-hop	Outputs enabled	$O_{L} = 50 \text{ pr}, I = 10 \text{ Wirlz}$	5 V	60	יץ
		Outputs disabled	57	35		



SCLS197B - FEBRUARY 1993 - REVISED APRIL 1996

PARAMETER MEASUREMENT INFORMATION

- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, Z_O = 50 Ω , t_f \leq 2.5 ns, t_f \leq 2.5 ns.
 - D. The outputs are measured one at a time with one transition per measurement.
 - E. t_{PLZ} and t_{PHZ} are the same as t_{dis} .
 - F. t_{PZL} and t_{PZH} are the same as t_{en} .
 - G. t_{PLH} and t_{PHL} are the same as t_{pd} .

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any semiconductor product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

TI warrants performance of its semiconductor products and related software to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

Certain applications using semiconductor products may involve potential risks of death, personal injury, or severe property or environmental damage ("Critical Applications").

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS.

Inclusion of TI products in such applications is understood to be fully at the risk of the customer. Use of TI products in such applications requires the written approval of an appropriate TI officer. Questions concerning potential risk applications should be directed to TI through a local SC sales office.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards should be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or services described herein. Nor does TI warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used.

Copyright © 1996, Texas Instruments Incorporated