
SCLS117B - DECEMBER 1982 - REVISED MAY 1997

- Synchronous Load
- Direct Overriding Clear
- Parallel-to-Serial Conversion
- Package Options Include Plastic Small-Outline (D) and Ceramic Flat (W) Packages, Ceramic Chip Carriers (FK), and Standard Plastic (N) and Ceramic (J) 300-mil DIPs

description

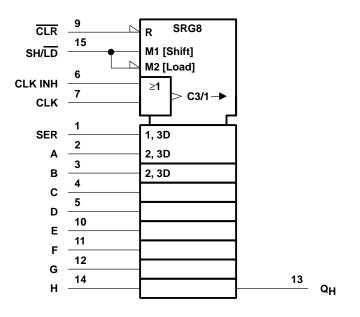
The 'HC166 parallel-in or serial-in, serial-out registers feature gated clock (CLK, CLK INH) inputs and an overriding clear (CLR) input. The parallel-in or serial-in modes are established by the shift/load (SH/LD) input. When high, SH/LD enables the serial (SER) data input and couples the eight flip-flops for serial shifting with each clock (CLK) pulse. When low, the parallel (broadside) data inputs are enabled, and synchronous loading occurs on the next clock pulse. During parallel loading, serial data flow is inhibited. Clocking is accomplished on the low-to-high-level edge of CLK through a 2-input positive-NOR gate permitting one input to be used as a clock-enable or clock-inhibit function. Holding either CLK or CLK INH high inhibits clocking; holding either low enables the other clock input. This allows the system clock to be free running, and the register can be stopped on command with the other clock input. CLK INH should be changed to the high level only when CLK is high. CLR overrides all other inputs, including CLK, and resets all flip-flops to zero.

NC - No internal connection

The SN54HC166 is characterized for operation over the full military temperature range of –55°C to 125°C. The SN74HC166 is characterized for operation from –40°C to 85°C.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

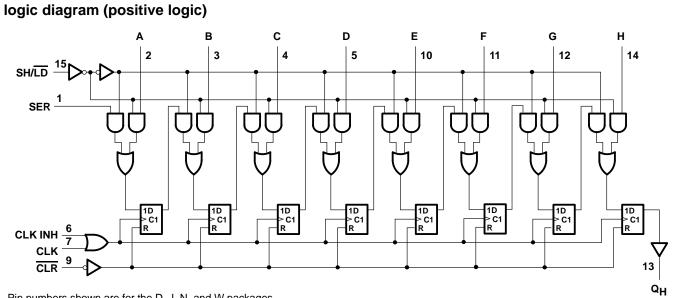
PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.



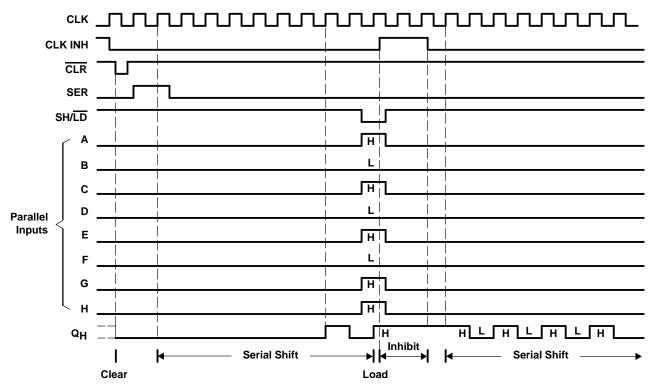
Copyright © 1997, Texas Instruments Incorporated

SCLS117B - DECEMBER 1982 - REVISED MAY 1997

FUNCTION TABLE												
		IND	IITE			C	UTPUT	S				
		INPUTS					RNAL					
CLR	SH/LD	CLK INH	CLK	SER	PARALLEL AH	QA	QB	QH				
L	Х	Х	Х	Х	Х	L	L	L				
н	Х	L	L	Х	Х	Q _{A0}	Q_{B0}	Q _{H0}				
н	L	L	\uparrow	Х	ah	а	b	h				
н	Н	L	\uparrow	Н	Х	Н	Q _{An}	Q _{Gn}				
н	н	L	\uparrow	L	Х	L	Q _{An}	Q _{Gn}				
н	Х	Н	\uparrow	Х	Х	Q _{A0}	Q _{B0}	Q _{H0}				


logic symbol[†]

 \dagger This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12. Pin numbers shown are for the D, J, N, and W packages.



SCLS117B - DECEMBER 1982 - REVISED MAY 1997

Pin numbers shown are for the D, J, N, and W packages.

SCLS117B - DECEMBER 1982 - REVISED MAY 1997

absolute maximum ratings over operating free-air temperature range[†]

Supply voltage range, V _{CC}	
Input clamp current, I _{IK} (V _I < 0 or V _I > V _{CC}) (see Note 1)	±20 mA
Output clamp current, I _{OK} (V _O < 0 or V _O > V _{CC}) (see Note 1)	±20 mA
Continuous output current, $I_O (V_O = 0 \text{ to } V_{CC})$	±25 mA
Continuous current through V _{CC} or GND	±50 mA
Package thermal impedance, θ_{JA} (see Note 2): D package	113°C/W
N package	
Storage temperature range, T _{stg}	–65°C to 150°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

2. The package thermal impedance is calculated in accordance with JESD 51, except for through-hole packages, which use a trace length of zero.

recommended operating conditions

			SI	N54HC16	6	SN	SN74HC166 MIN NOM MAX		UNIT
			MIN	NOM	MAX	MIN	NOM	MAX	UNIT
VCC	Supply voltage		2	5	6	2	5	6	V
		$V_{CC} = 2 V$	1.5			1.5			
VIH	High-level input voltage	$V_{CC} = 4.5 V$	3.15			3.15			V
		$V_{CC} = 6 V$	4.2			4.2			
		$V_{CC} = 2 V$	0		0.5	0		0.5	
VIL	Low-level input voltage	$V_{CC} = 4.5 V$	0		1.35	0		1.35	V
		VCC = 6 V	0		1.8	0		5 6 0.5 1.35 1.8 VCC VCC 1000 500 400	1
VI	Input voltage		0		VCC	0		VCC	V
VO	Output voltage		0		VCC	0		VCC	V
		$V_{CC} = 2 V$	0		1000	0		1000	
tt‡	Input transition (rise and fall) time	$V_{CC} = 4.5 V$	0		500	0		500	ns
		ACC = 6 A	0		400	0		400	
ТА	Operating free-air temperature		-55		125	-40		85	°C

[‡] If this device is used in the threshold region (from $V_{IL}max = 0.5$ V to $V_{IH}min = 1.5$ V), there is a potential to go into the wrong state from induced grounding, causing double clocking. Operating with the inputs at $t_t = 1000$ ns and $V_{CC} = 2$ V does not damage the device; however, functionally, the CLK inputs are not ensured while in the shift, count, or toggle operating modes.

SCLS117B – DECEMBER 1982 – REVISED MAY 1997

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS			Т	A = 25°C	;	SN54HC166		SN74HC166		UNIT
PARAMETER	TEST CC	INDITIONS	Vcc	MIN	TYP	MAX	MIN	MAX	MIN	MAX 0.1 0.1 0.33 ±1000 80	
			2 V	1.9	1.998		1.9		1.9		
		I _{OH} = -20 μA	4.5 V	4.4	4.499		4.4		4.4		
∨он	$V_{I} = V_{IH} \text{ or } V_{IL} + \frac{6 V}{10 H} = -4 \text{ mA} + \frac{4.5 V}{10 H} = -5.2 \text{ mA} + \frac{6 V}{5.48} = \frac{5.9}{5.8} = \frac{5.9}{5.9} = \frac{5.9}{$		V								
		I _{OH} = -4 mA	4.5 V	3.98	4.3		3.7		3.84		
		I _{OH} = -5.2 mA	6 V	5.48	5.8		5.2		5.34		
	VI = VIH or VIL	I _{OL} = 20 μA	2 V		0.002	0.1		0.1		0.1	v
			4.5 V		0.001	0.1		0.1		0.1	
VOL			6 V		0.001	0.1		0.1		0.1	
		$I_{OL} = 4 \text{ mA}$	4.5 V		0.17	0.26		0.4		0.33	
		I _{OL} = 5.2 mA	6 V		0.15	0.26		0.4		0.33	
lj	$V_I = V_{CC} \text{ or } 0$		6 V		±0.1	±100		±1000		±1000	nA
ICC	$V_{I} = V_{CC} \text{ or } 0,$	I <mark>O</mark> = 0	6 V			8		160		80	μΑ
C _i			2 V to 6 V		3	10		10		10	pF

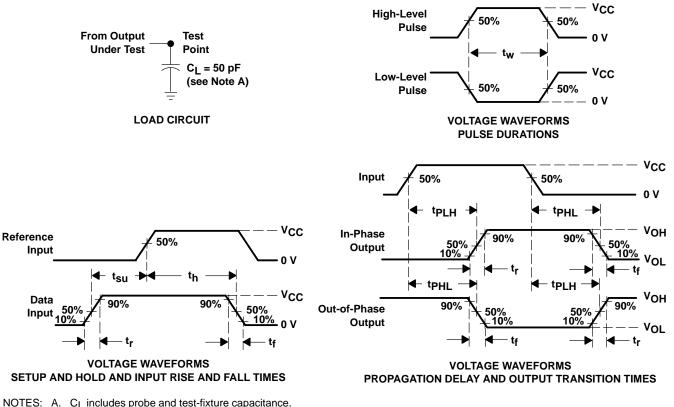
SCLS117B - DECEMBER 1982 - REVISED MAY 1997

timing requirements over recommended operating free-air temperature range (unless otherwise
noted)

				T _A =	25°C	SN54H	IC166	SN74H	IC166	
			Vcc	MIN	MAX	MIN	MAX	MIN	MAX	UNIT
			2 V	0	6	0	4.2	0	5	
fclock	Clock frequency		4.5 V	0	31	0	21	0	25	MHz
			6 V	0	36	0	25	0	29	
			2 V	100		150		125		
		CLR low	4.5 V	20		30		25		
	Dulas duration		6 V	17		26		21		
tw	Pulse duration		2 V	80		120		100		ns
	CLK high or low	4.5 V	16		24		20			
			6 V	14		20		17		
			2 V	145		220		180		
		SH/LD high before CLK↑	4.5 V	29		44		36		
			6 V	25		38		31		
			2 V	80		120		100		
		SER before CLK↑	4.5 V	16		24		20		
			6 V	14		20		17		
		CLK INH low before CLK↑	2 V	100		150		125		
t _{su}	Setup time		4.5 V	20		30		25		ns
			6 V	17		26		21		
			2 V	80		120		100		
		Data before CLK↑	4.5 V	16		24		20		
			6 V	14		20		17		
			2 V	40		60		50		
		CLR inactive before CLK [↑]	4.5 V	8		12		10		
			6 V	7		10		9		
			2 V	0		0		0		
		SH/LD high after CLK↑	4.5 V	0		0		0		
			6 V	0		0		0		
			2 V	5		5		5		
		SER after CLK↑	4.5 V	5		5		5		
÷.	Hold time		6 V	5		5		5		20
th			2 V	0		0		0		ns
		CLK INH high after CLK↑	4.5 V	0		0		0		
			6 V	0		0		0		
			2 V	5		5		5		
		Data after CLK1	4.5 V	5		5		5		
			6 V	5		5		5		

SCLS117B - DECEMBER 1982 - REVISED MAY 1997

switching characteristics over recommended operating free-air temperature range, $C_L = 50 \text{ pF}$ (unless otherwise noted) (see Figure 1)


PARAMETER	FROM	то	Vaa	Τį	ן = 25°C	;	SN54H	IC166	SN74H	IC166	
PARAMETER	(INPUT)	(OUTPUT)	Vcc	MIN	TYP	MAX	MIN	MAX	MIN	MIN MAX 5 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	UNIT
			2 V	6	11		4.2		5		
f _{max}			4.5 V	31	36		21		25		MHz
			6 V	36	45		25		29	5 MHz 25 MHz 29 ns 150 ns 26 ns 190 ns 38 ns 32 ns 95 ns	
			2 V		62	120		180		150	ns
^t PHL	CLR	QH	4.5 V		18	24		36		30	
			6 V		13	20		31		26	
			2 V		75	150		225		190	
^t pd	CLK	Q _H	4.5 V		15	30		45		38	ns
			6 V		13	26		38		32	
			2 V		38	75		110		95	
tt		Any	4.5 V		8	15		22		19	ns
			6 V		6	13		19		16	

operating characteristics, T_{A} = 25°C

	PARAMETER	TEST CONDITIONS	TYP	UNIT
C _{pd}	Power dissipation capacitance	No load	50	pF

SCLS117B - DECEMBER 1982 - REVISED MAY 1997

PARAMETER MEASUREMENT INFORMATION

NOTES: A. CL includes probe and test-fixture capacitance.

- B. Phase relationships between waveforms were chosen arbitrarily. All input pulses are supplied by generators having the following characteristics: PRR \leq 1 MHz, Z_O = 50 Ω , t_f = 6 ns, t_f = 6 ns.
- C. For clock inputs, fmax is measured when the input duty cycle is 50%.
- D. The outputs are measured one at a time with one input transition per measurement.

E. tPLH and tPHL are the same as tpd.

Figure 1. Load Circuit and Voltage Waveforms

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any semiconductor product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

TI warrants performance of its semiconductor products and related software to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

Certain applications using semiconductor products may involve potential risks of death, personal injury, or severe property or environmental damage ("Critical Applications").

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS.

Inclusion of TI products in such applications is understood to be fully at the risk of the customer. Use of TI products in such applications requires the written approval of an appropriate TI officer. Questions concerning potential risk applications should be directed to TI through a local SC sales office.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards should be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or services described herein. Nor does TI warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used.

Copyright © 1996, Texas Instruments Incorporated