SN54LV245, SN74LV245 OCTAL BUS TRANSCEIVERS WITH 3-STATE OUTPUTS SCLS075E – JANUARY 1991 – REVISED APRIL 1996

- *EPIC*[™] (Enhanced-Performance Implanted CMOS) 2-μ Process
- Typical V_{OLP} (Output Ground Bounce) < 0.8 V at V_{CC}, T_A = 25°C
- Typical V_{OHV} (Output V_{OH} Undershoot)
 2 V at V_{CC}, T_A = 25°C
- ESD Protection Exceeds 2000 V Per MIL-STD-883C, Method 3015; Exceeds 200 V Using Machine Model (C = 200 pF, R = 0)
- Latch-Up Performance Exceeds 250 mA Per JEDEC Standard JESD-17
- Package Options Include Plastic Small-Outline (DW), Shrink Small-Outline (DB), Thin Shrink Small-Outline (PW), Ceramic Flat (W) Packages, Chip Carriers (FK), and (J) 300-mil DIPs

description

These octal bus transceivers are designed for 2.7-V to 5.5-V V_{CC} operation.

The 'LV245 are designed for asynchronous communication between data buses. The device transmits data from the A bus to the B bus or from the B bus to the A bus, depending upon the logic level at the direction-control (DIR) input. The output-enable (\overline{OE}) input can be used to disable the device so the buses are effectively isolated.

SN74LV245 DB, DW, OR PW PACKAGE (TOP VIEW)									
DIR [A1 [A2 [A3 [A4 [A5 [A6 [A7 [A8 [GND [1 2 3 4 5 6 7 8 9 10	20] 19] 18] 17] 16] 15] 14] 13] 12]	V _{CC} OE B1 B2 B3 B4 B5 B6 B7 B8						

SN54LV245 ... J OR W PACKAGE

SN54LV245 . . . FK PACKAGE (TOP VIEW)

	A2 A1 DIR <u>VC</u> C
A3	3 2 1 20 19 4 18 B1
A3 A4 A5 A6 A7] 5 17 [B2
A5]6 16 ∐ B3
A6]7 15 B4
A7] 8 14 B5 9 10 11 12 13
	G A8 B8 D D C B8 D D D C B8 D D D D C B8 D D D D D C B8 D D D D D D D D D D D D D D D D D D D

The SN74LV245 is available in TI's shrink small-outline package (DB), which provides the same I/O pin count and functionality of standard small-outline packages in less than half the printed-circuit-board area.

The SN54LV245 is characterized for operation over the full military temperature range of –55°C to 125°C. The SN74LV245 is characterized for operation from –40°C to 85°C.

FUNCTION TABLE										
INP	UTS	OPERATION								
OE	DIR	OPERATION								
L	L	B data to A bus								
L	н	A data to B bus								
Н	Х	Isolation								

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

EPIC is a trademark of Texas Instruments Incorporated.

UNLESS OTHERWISE NOTED this document contains PRODUCTION DATA information current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.

Copyright © 1996, Texas Instruments Incorporated

SN54LV245, SN74LV245 OCTAL BUS TRANSCEIVERS WITH 3-STATE OUTPUTS

SCLS075E - JANUARY 1991 - REVISED APRIL 1996

logic symbol[†]

To Seven Other Channels

[†] This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

Pin numbers shown are for DB, DW, J, PW, and W packages.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)[‡]

Supply voltage range, V_{CC}
Input clamp current, I_{IK} ($V_I < 0$ or $V_I > V_{CC}$) $\pm 20 \text{ mA}$ Output clamp current, I_{OK} ($V_O < 0$ or $V_O > V_{CC}$) $\pm 50 \text{ mA}$ Continuous output current, I_O ($V_O = 0$ to V_{CC}) $\pm 35 \text{ mA}$
Continuous current through V_{CC} or GND
DW package
Storage temperature range, T _{stg} –65°C to 150°C

[‡] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

2. This value is limited to 7 V maximum.

3. The maximum package power dissipation is calculated using a junction temperature of 150°C and a board trace length of 750 mils.

SCLS075E - JANUARY 1991 - REVISED APRIL 1996

recommended operating conditions (see Note 4)

			SN54L	V245	SN74L	.V245	UNIT	
			MIN	MAX	MIN	MAX	UNIT	
VCC	Supply voltage		2.7	5.5	2.7	5.5	V	
	High lovel input veltage	$V_{CC} = 2.7 V \text{ to } 3.6 V$	2		2		V	
VIH	High-level input voltage	V_{CC} = 4.5 V to 5.5 V	3.15		3.15		1 [×]	
	Low level input voltage	$V_{CC} = 2.7 V \text{ to } 3.6 V$		0.8		0.8	V	
1 -	Low-level input voltage	V_{CC} = 4.5 V to 5.5 V		1.65		1.65	v	
VI	Input voltage		0	Vcc	0	VCC	V	
VO	Output voltage		0	VCC	0	VCC	V	
lau	High lovel output ourrent	$V_{CC} = 2.7 V \text{ to } 3.6 V$	na	-8		-8	mA	
ЮН	High-level output current	V_{CC} = 4.5 V to 5.5 V	Po Po	-16		-16	mA	
la.		$V_{CC} = 2.7 V \text{ to } 3.6 V$	Y	8		8	~ ^	
IOL	Low-level output current	V_{CC} = 4.5 V to 5.5 V		16		16	mA	
$\Delta t/\Delta v$	Input transition rise or fall rate		0	50	0	50	ns/V	
Т _А	Operating free-air temperature		-55	125	-40	85	°C	

NOTE 4: Unused inputs must be held high or low to prevent them from floating.

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

		TEST CONDITIONS	v +	SN54LV245			SN				
P.	ARAMETER	TEST CONDITIONS	Vcc [†]	MIN	TYP	MAX	MIN	TYP	MAX	UNIT	
		I _{OH} = -100 μA	MIN to MAX	V _{CC} –0	.2		V _{CC} -0	.2			
∨он		IOH = -8 mA	3 V	2.4			2.4			V	
		I _{OH} = -16 mA	4.5 V	3.6			3.6				
		I _{OL} = 100 μA	MIN to MAX			0.2			0.2		
VOL		I _{OL} = 8 mA	3 V			0.4			0.4	V	
		I _{OL} = 16 mA	4.5 V			0.55			0.55		
1.			3.6 V		N.	±1			±1		
1 ₁		$V_{I} = V_{CC}$ or GND	5.5 V		RE	±1			±1	μA	
. +			3.6 V	±5				±5			
loz‡		$V_{O} = V_{CC}$ or GND	5.5 V		5	±5			±5	μA	
			3.6 V	0		20			20		
lcc		$V_{I} = V_{CC} \text{ or GND}, \qquad I_{O} = 0$	5.5 V	Q		20			20	μA	
∆ICC		One input at V_{CC} – 0.6 V, Other inputs at V_{CC} or GND	3 V to 3.6 V			500			500	μA	
			3.3 V		2.5			2.5		_	
Ci	Control inputs	$V_I = V_{CC}$ or GND	5 V		3			3		pF	
			3.3 V		7			7		_	
Co	A or B port	$V_{O} = V_{CC}$ or GND	5 V		8			8		pF	

[†] For conditions shown as MIN or MAX, use the appropriate values under recommended operating conditions.

[‡] For I/O ports, the parameter I_{OZ} includes the input leakage current.

SN54LV245, SN74LV245 **OCTAL BUŚ TRANSCEIVERS** WITH 3-STATE OUTPUTS

SCLS075E - JANUARY 1991 - REVISED APRIL 1996

switching characteristics over recommended operating free-air temperature range, $C_L = 50 \text{ pF}$ (unless otherwise noted) (see Figure 1)

			SN54LV245								
PARAMETER	FROM (INPUT)	TO (OUTPUT)	V_{CC} = 5 V \pm 0.5 V		$V_{\mbox{CC}}$ = 3.3 V \pm 0.3 V			V _{CC} = 2.7 V		UNIT	
			MIN	TYP	MAX	MIN	TYP	MAX	MIN	MAX	
^t pd	A or B	B or A		8	11	N.N	8	14	N.	18	ns
^t en	OE	A or B		6	্বশ্ব	e.VIII	12	21	NI	25	ns
^t dis	OE	A or B		8	16		12	20		24	ns

switching characteristics over recommended operating free-air temperature range, $C_L = 50 \text{ pF}$ (unless otherwise noted) (see Figure 1)

		FROM TO (INPUT) (OUTPUT)	SN74LV245								
PARAMETER	-		V_{CC} = 5 V \pm 0.5 V		$V_{\mbox{CC}}$ = 3.3 V \pm 0.3 V			V _{CC} = 2.7 V		UNIT	
			MIN	TYP	MAX	MIN	TYP	MAX	MIN	MAX	
^t pd	A or B	B or A		8	11		8	14		18	ns
^t en	OE	A or B		6	14		12	21		25	ns
^t dis	OE	A or B		8	16		12	20		24	ns

operating characteristics, $T_A = 25^{\circ}C$

	PARAMETER	TEST CONDITIONS	Vcc	TYP	UNIT
C _{pd} Power dissipation capacitance per transceiver	Outputs enabled		3.3 V	36	pF
	Outputs disabled	C _I = 50 pF, f = 10 MHz		4	
	Outputs enabled	$O_{L} = 50 \text{ pr}, 1 = 10 \text{ With} 2$		46	pi
		Outputs disabled		5 V	4

٧z \cap TEST **S**1 O Open 1 k Ω **S1** From Output Open tPLH/tPHL **Under Test** tPLZ/tPZL GND ٧z \cap GND tPHZ/tPZH C_L = 50 pF **1 k**Ω (see Note A) WAVEFORM V_{CC} = 4.5 V V_{CC} = 2.7 V CONDITION to 5.5 V to 3.6 V 0.5 × VCC 1.5 V ۷m ٧i 2.7 V Vcc LOAD CIRCUIT ٧z 6 V $2 \times V_{CC}$ ٧i ٧m Timing Input 0 V tw t_{su} th ٧i ٧i ٧m Input ۷m ٧m ٧m Data Input οv nν **VOLTAGE WAVEFORMS VOLTAGE WAVEFORMS** PULSE DURATION SETUP AND HOLD TIMES ٧i ٧ı Output ٧m v_m ۷m Input ۷m Control 0 V 0 V ^tPZL K ^tPHL ^tPLH ^tPLZ Output Vон $0.5 \times V_z$ Waveform 1 ٧m ۷m Output ۷m S1 at Vz V_{OL} + 0.3 V Vol VOL (see Note B) ^tPHZ ^tPLH ^tPHL ^tPZH Output Output Vон ۷он Waveform 2 V_{OH} – 0.3 V ۷m ۷m ۷m S1 at GND ≈ 0 V VOL (see Note B) **VOLTAGE WAVEFORMS VOLTAGE WAVEFORMS PROPAGATION DELAY TIMES ENABLE AND DISABLE TIMES** INVERTING AND NONINVERTING OUTPUTS LOW- AND HIGH-LEVEL ENABLING

PARAMETER MEASUREMENT INFORMATION

NOTES: A. CL includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control.
 Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, Z_O = 50 Ω , t_f \leq 2.5 ns, t_f \leq 2.5 ns.
- D. The outputs are measured one at a time with one transition per measurement.
- E. tpLz and tpHz are the same as tdis.
- F. t_{PZL} and t_{PZH} are the same as t_{en} .
- G. tPLH and tPHL are the same as tpd.

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any semiconductor product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

TI warrants performance of its semiconductor products and related software to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

Certain applications using semiconductor products may involve potential risks of death, personal injury, or severe property or environmental damage ("Critical Applications").

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS.

Inclusion of TI products in such applications is understood to be fully at the risk of the customer. Use of TI products in such applications requires the written approval of an appropriate TI officer. Questions concerning potential risk applications should be directed to TI through a local SC sales office.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards should be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or services described herein. Nor does TI warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used.

Copyright © 1996, Texas Instruments Incorporated