SHARP PROPRIETARY

-

PREPARED BY: DATE		SPEC NO.
16 July 1995		FILE NO.
M. Kato	SHARP	ISSUE 16 July 1995
CHECKED BY: DATE		PAGE 11
16 July 1995	ELECTRONIC COMPONENTS GROUP	REPRESENTATIVE DIVISION
M. Nakamura	SHARP CORPORATION	SELECTRONIC COMPONENTS DIV.
APPROVED BY: DATE		OPTICAL DEVICE DIV.
16 July 1995	Q D E C I E I C A T I O N	PHOTO VOLTAICS DIV.
M. ogushi	SPECIFICATION	
	DEVICE SPECIFICATION FOR LOW NOISE BLOCK DOWNCONVERTEN ODEL NO. BSCH84P70 PUBLISHED MARP CORPORATION ELECTROMIC COMPONENTS ENGINEERING DEPT	
DATE		
	PRESENTED	
ВҮ	BY	Mamaucho
		GER

•

, .

	MODEL №. BSCH84P70	PAGE
HARP		-k
General Description		
	r specified is used in combination with an	
antenna for Ku band.		
	th left or right hand circularly polarized	
signals by electrical switching.		
Attached Reference Materials		
1. Block diagram (See PAGE 6)		•
2. Outline drawing (See PAGE 7)		
1. GENERAL SPECIFICATIONS		
1-1 Input component	Food-Horn (motobod numerical and 708)	
1-2 Receiving frequency range	:Feed-Horn (matched numerical angle:78°) :12.2GHz to 12.7GHz	
1-3 Local oscillation frequency	:11. 25GHz	
1-4 Output component	:Dual F-type female connector *1 (See PAGE 3)	
1-5 Nominal output impedance	:75 Ω	
1-6 Supply voltage	:11.8V~19V (omitting 14V~16.0V)	
1-7 Power supply system	:IF output overlapping system	
1-8 Exterior material	:Diecast aluminum	
1-9 Weight	:340±25g	
1-10 SW method for L/R LNB	:Voltage comparator	
2. AMBIENT CONDITIONS		
2-1 Operating temperature	:-30°F~+150°F (-34.4℃~+65.5℃)	
2-2 Storage temperature	:-40°F~+160°F (-40℃~+71.1℃)	
2-3 Humidity	:Operating: 0%~95%RH 0100°F(37.8C)	
	:Storage : 0%~95%RH @100°F(37.8C)	
2-4 Ambient pressure	$:(1.01\pm0.3)\times10^{5}$ Pa (0.7~1.3 atm)	

SHARP PROPRIETARY

......

MODEL	N	D.								
	В	S	С	Η	8	4	Ρ	7	0	

PAGE 2

SHARP

3. ELECTRICAL CHARACTERISTICS

Unless otherwise indicated, each of the following specified values is applicable under normal ambient temperature and humidity conditions. (Normal ambient temperature and humidity \Rightarrow +15°C~+35°C, 60±20%RH)

No.	Item	8	Specification			Condition		
		Nir	Тур	Max	Unit	Теп	Hu	Note
3-1	Noise figure			1.1	dB	A	В	in 12.2~12.7GHz
	· · · · · · · · · · · · · · · · · · ·							*2 *3
3-2	Conversion gain	50		62	dB	A	B	overall 12.2~12.7
								GHz
3-3	Gain frequency			5	dBpp	A	В	within all band
	characteristics			±0. 5	dB	A	В	within any 25MHz
3-4	Local oscillation freq-							
	uency and drift							
3-4-1	Local oscillation freq-		11. 25		GHz	В	В	
	uency							
3-4-2	Initial drift			±2	NHz	A	В	*4
3-4-3	Drift associated with			±3	MHz	С	В	*5
	temperature change							
3-4-4	Local Uncertainty			±5	MIIz	C	B	*6
3-5	Cross polar discrimination	20	25		dB	В	B	
3-6	1dB Compression Point	-3. 0	0.0		dBm	В	B	
3-7	Output VSWR		-	2. 0		В	В	75 Ω
3-8	Current consumption			200	mA	В	B	
3-9	Supply voltage	11. 8		14.0	V	С	В	RHCP selected
	(output1 and output2)	16. 0		19.0	V	С	В	LIICP selected
3-10	L.O.SSB phase noise			-50	dBc/IIz	В	B	at 1KHz offset
				-70	dBc/Hz	В	B	at 10KHz offset
				-90	dBc/llz	B	В	at 100KHz offset
				-110	dBc/IIz	B	В	at 1MHz offset
3-11	f/D ratio		0.59			В	В	

SHARP CONFIDENTIAL AND PROPRIETARY

ARP	BSCH84P70
<pre>*1 When a coa nector(①) should be</pre>	axial cable is connected to F-type con-), length of bared core area into the connector within 5~9mm, and the length of exposed area(2) should be within 0.8mm. $(2)_{0.8}$
	accuracy for noise figure $\Rightarrow \pm 0.2$ dB
*3 Input is r	referenced to INPUT of LNB(not includes feed horn) and
includes p	polarizer element in measurement.
-	Υ
Tem:temperatur	re $A \Rightarrow +25\pm2^{\circ}C$
	B⇒ +15℃~+35℃
	C⇒ -30° F~+150°F (-34. 4°C \sim +65. 5°C)
Hu:humidity	$A \Rightarrow 60\pm5\%$ RH
	$B \Rightarrow 60\pm 20\% RH$
kA ∔79°F (⊥999	°C), 15min, warm-up with power applied.
	C), is min, warm-up with power applied. frequency at 25°C and $60\pm20\%$ RH.
	rter oscillator frequency uncertainty
	environmental testing, including

.

SHARP

4. RELIABILITY TESTING

4-1 Low temperature shelf test (unpacked condition) After the test samples are left at -40°C for 500 hours and then at normal temperature and

humidity for 2 hours, normal operation shall be observed without any defects in appearance.

4-2 High temperature and humidity shelf test (unpacked condition)

After the test samples are left at 60°C 95%RH for 500 hours and then at normal temperature and humidity for 2 hours, normal operation shall be observed without any defects in appearance.

4-3 Heat cycle test (unpacked condition)

The test samples are first subjected to 50 heat cycles, each consisting of three stages ; 1 hour at -40°C, 2 hours at 55°C and 95%RH, and 1 hour at 65°C. After samples are subsequently left at normal temperature and humidity for 2 hours, normal operation hall be observed in each internal part without any defects in appearance.

4-4 Electrostatic shock test

A 100pF capacitor is charged to the specified voltage and discharged through a 150 ohm resistor to any exposed part of the ODU, including the center conductor of the output "F" connector. There shall be no failure of any component up to + or -20000 volts. Test are to be made in increments of 2000 volts. (See ATTACHMENT 1)

4-5 Lightning resistance test

Lightning resistance test shall be conducted at the non-operative LNB output terminal. No failure up to ± 3 KV discharged via 10 Ω resistor. (See ATTACHMENT 1)

4-6 Vibration test (packaged condition)

Apply vibration(full amplitude of 1.5mm at $5\sim$ 50Hz) in specified direction(s) and duration according to as-packaged component weight shown below;

- a) For components weighting 10kg or less, 0.5 hour in each of the X,Y and Z-directions.
- b) For those weighting over 10kg but no more than 50kg, 30 minutes in only one direction, along either side of the component packing.

After the test, normal operation shall be observed without any defects in appearance.

SHARP

4-7 Drop test (packaged condition)

One corner	: One optionally selected corner of the plane which constitutes
	the bottom of the packing.
3 edges	: One short and two long edges which define the corner selected
	for the drop test; start with the shorter edge and follow with
	the remaining longer ones.
6 planes	: Start with the plane of smallest area then follow in order of

increasing area. Drop test height : 65 cm

After the above drop tests are completed, normal operation shall be observed in each test sample without any defects in appearance.

4-8 High temperature aging test

Subject the test samples to a cyclic aging test in an environment of 70 ± 5 °C, $10\sim$ 15% RH, with the source voltage stepped up by 10% of the rated value. Each cycle shall consist of an ON period of 25 minutes duration and an OFF period of 5 minutes duration.

After 500 hours of testing, normal operation shall be observed without any defects in appearance. (Check at specified measurment check points (250 hours and 500 hours after test start.))

4-9 Leakage test

Air penetration (air leakage) to the inside of LNB shall be 4.5×10^{-2} cc/sec or less, when air pressure of 0.45 kg/cm² is loaded externaly to LNB.

4-10 Solar radiation (See ATTACHMENT 2)

4-11 Corrosion (See ATTACHNENT 3)

- 5. RELIABILITY ITEMS (ASSURED IN DESIGN STAGE)
- 5-1 Design life Theoretical life for reference 10 years (MTBF).
- 5-2 Altitude

20000ft (0.459 atm) without damage.

pluged in an F-connector, no failure in performances can be seen.

	MODEL No. BSCH84P70	PAGE 10
ARP	A	TTACHMENT 2
☆ Solar Radiation		
To conduct a weatherability test, in conf	formity to Japanese	
Industrial Standards(JIS), JIS D 0205 (Ge	eneral Rules of	
Weatherability for Automobile Parts).		
[A] Main Conditions		
1. Test Equipment : Sunshine Weather Met	er	
2. Light Source : Sunshine Carbon Arc	Lamp	
3. Average Voltage Discharge : 50 V (±29	%)	
4. Average Current Discharge : 60 A (±29	6)	
5. Black Panel Temperature : 63 ± 3℃		
6. Water Jet Time : 18 minutes during 120)minutes irradiation	
7. Test Time : 500 H Continual Irr	adiation	
(intermediate Checku	p after 300 H)	
8. Others : Water-proof Plug to be attack	hed to F-connecter(Female)	

[B] Judgement Criteria

S

There should be no major defects in practical performances. As for appearances, the products should conform to the following, after removing stains from a surface.

	after 300 H	after 500 H				
Items to be Observed	Plastic Resin & Coating					
Discoloration	Color difference ≤ 5	Color difference ≤ 8				
Crazing	No remarkable one No extreme one					
Choking	No remarkable one No extreme one					
Cracks	No remarkable one No extreme one					
Exfoliation, Puff	None No remarkable one					
Leakage Test	No problem No problem					

	MODEL No. BSC	H84P70 PAGE 11
IARP		ATTACHNENT
☆ Corrosion		
To conduct Brine	e spray test, in conformity to Japanes	se Industrial
Standads(JIS), JI	IS Z 2371(Methods of Salt Spray Testing	;).
[A] Major Conditi	lons	
1. Temperature	: 35 ± 2°C	
2. Brine Concent	tration : 5 ± 1%	
3. Test Time	: 100 H Continual Spray	
4. Others	: Water-proof Plug to be attach	ed to
	F-connector(Female)	

[B] Judgement Criteria

After 100 H, there should be no major defects in practical performances. As for appearances, the products should conform to the following after removing stains from a surface.

Items to be Observed	Plastic Resin & Coating
Puff	No remarkable one (six puffs or less
	whose diameter is \leq 4mm in the whole area.)
Exfoliation	No remarkable one (six exfoliations or less
	whose diameter is ≤ 5 mm in the whole area.)
Rust	Corroded area should be within 10%
Leakage test	No problem