SCES091A – DECEMBER 1996 – REVISED APRIL 1997

	SCESUSIA - DECE	EMBER 1996 – RE\
 Member of the Texas Instruments Widebus™ Family 	DGG PA (TOP V	
 Inputs Meet JEDEC HSTL Standard JESD8-6 	1Q2 [1 2Q1 [2	64] 2Q2 63] 1Q3
 All Outputs Have Equivalent 25-Ω Series Resistors 	1Q1 [] 3 GND [] 4	62 GND 61 2Q3
 Packaged in Plastic Thin Shrink Small-Outline Package 	D1 [5 D2 [6	60] 1Q4 59] V _{CC}
description	D3 [] 7 V _{CC} [] 8	58 2Q4 57 125
This 14-bit to 28-bit D-type latch is designed for 3.15 -V to 3.45 -V V _{CC} operation. HSTL levels are expected on the inputs. LVTTL levels are driven on the Q outputs.	D4 [] 9 D5 [] 10 D6 [] 11 GND [] 12	56] GND 55] 2Q5 54] 1Q6 53] V _{CC}
All outputs are designed to sink up to 12 mA and include $25-\Omega$ series resistors to reduce overshoot and undershoot.	D7 [13 1LE [14 V _{CC} [15 V _{REF} [16	52] 2Q6 51] 1Q7 50] GND 49] 2Q7
The SN74HSTL162822 is particularly suitable for driving an address bus to two banks of memory. Each bank of 14 outputs is controlled with its own latch-enable (LE) input.	GND [17 GND [17 GND [18 2LE [19 D8 [20	48] 2Q8 47] GND 46] 1Q8 45] 2Q9
Each of the 14 data (D) inputs is tied to the inputs of two D-type latches, which provide true data at the outputs. While \overline{LE} is low, the outputs (Q) of the corresponding 14 latches follow the D inputs. When \overline{LE} is taken high, the Q outputs are latched at the levels set up at the D inputs.	GND 21 D9 22 D10 23 D11 24 V _{CC} 25 D12 26	44 VCC 43 1Q9 42 2Q10 41 GND 40 1Q10 39 2Q11
The SN74HSTL162822 is characterized for operation from -40° C to 90°C.	D13 [] 27 D14 [] 28 GND [] 29 1Q14 [] 30	38] V _{CC} 37] 1Q11 36] 2Q12 35] GND

FUNCTION	TABLE

2Q14 🛛 31

1Q13 🛛 32

34 0 1Q12

33 2Q13

INPUTS OUT					
D	Q				
Н	Н				
L	L				
Х	Q ₀ †				
	D H L				

[†]Output level before the indicated steady-state input conditions were established

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

Widebus is a trademark of Texas Instruments Incorporated.

PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.

SCES091A - DECEMBER 1996 - REVISED APRIL 1997

logic diagram (positive logic)

To 13 Other Channels

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)[†]

Supply voltage range, V _{CC}	–0.5 V to 4.6 V
Input voltage range, V _I (see Note 1)	–0.5 V to V _{CC} + 0.5 V
Output voltage range, V _O (see Note 1)	–0.5 V to V _{CC} + 0.5 V
Input clamp current, I _{IK} (V _I < 0)	–50 mA
Output clamp current, I_{OK} ($V_O < 0$ or $V_O > V_{CC}$) (see Note 2)	±50 mA
Continuous output current, $I_O (V_O = 0 \text{ to } V_{CC})$	±50 mA
Continuous current through each V _{CC} or GND	±100 mA
Package thermal impedance, θ_{JA} (see Note 3)	
Storage temperature range, T _{stg}	

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.

2. This current flows only when the output is in the high state and $V_O > V_{CC}$.

3. The package thermal impedance is calculated in accordance with EIA/JEDEC Std JESD51.

recommended operating conditions (see Note 4)

			MIN	NOM	MAX	UNIT
VCC	Supply voltage		3.15		3.45	V
VREF	Reference voltage		0.68	0.75	0.9	V
VI	Input voltage		0		1.5	V
VIH	High-level input voltage	All pins	V _{REF} +100 mV			V
VIL	Low-level input voltage	All pins	V _{REF} -100 mV		V	
IOH	High-level output current				-12	mA
I _{OL}	Low-level output current				12	ША
Т _А	Operating free-air temperature		-40		90	°C

NOTE 4: Unused inputs must be held high or low to prevent them from floating.

SCES091A - DECEMBER 1996 - REVISED APRIL 1997

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER TEST CONDITIONS		MIN TYP	† MAX	UNIT		
VIK		V _{CC} = 3.15 V,	lj = -18 mA		-1.2	V
Vон		V _{CC} = 3.15 V,	$I_{OH} = -12 \text{ mA}$	2.2		V
VOL		V _{CC} = 3.15 V,	I _{OL} = 12 mA		0.8	V
II	Control inputs		VI = 0 or 1.5 V		5	
	Data inputs	V _{CC} = 3.45 V	VI = 0 or 1.5 V		5	μA
	VREF		V _{REF} = 0.68 V or 0.9 V		90	
ICC		V _{CC} = 3.45 V,	VI = 0 or 1.5 V	50	0 100	mA
Ci	Control inputs	V _{CC} = 0 or 3.3 V,	VI = 0 or 3.3 V	:	2	~F
	Data inputs	V _{CC} = 0 or 3.3 V,	VI = 0 or 3.3 V		2	pF
Co	Outputs	V _{CC} = 0,	$V_{O} = 0$		4	pF

[†] All typical values are at V_{CC} = 3.3 V, T_A = 25°C.

timing requirements over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 1)

		V _{CC} = 3.3 V ± 0.15 V		UNIT
		MIN	MAX	
tw	Pulse duration, LE low	3		ns
t _{su}	Setup time, D before LE↑	2		ns
t _h	Hold time, D after LE↑	1		ns

switching characteristics over recommended operating free-air temperature range, V_{REF} = 0.75 V

PARAMETER	FROM (INPUT)	то (оитрит)	V _{CC} = 3.3 V ± 0.15 V		UNIT
		MIN	MAX		
.	D	0	1.6	5	-
^t pd	LE	Q	1.7	5.7	ns

SCES091A - DECEMBER 1996 - REVISED APRIL 1997

PARAMETER MEASUREMENT INFORMATION

NOTES: A. C_L includes probe and jig capacitance.

C. The outputs are measured one at a time with one transition per measurement.

D. t_{PHL} and t_{PLH} are the same as t_{pd} .

Figure 1. Load Circuit and Voltage Waveforms

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any semiconductor product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

TI warrants performance of its semiconductor products and related software to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

Certain applications using semiconductor products may involve potential risks of death, personal injury, or severe property or environmental damage ("Critical Applications").

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS.

Inclusion of TI products in such applications is understood to be fully at the risk of the customer. Use of TI products in such applications requires the written approval of an appropriate TI officer. Questions concerning potential risk applications should be directed to TI through a local SC sales office.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards should be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or services described herein. Nor does TI warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used.

Copyright © 1996, Texas Instruments Incorporated