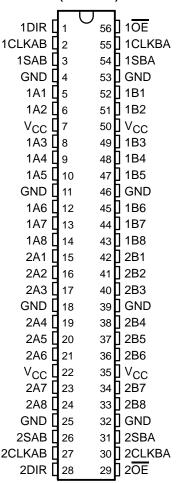
SCES072A - JUNE 1996 - REVISED JULY 1996

- Members of the Texas Instruments


 Widebus™ Family
- High-Impedance State During Power Up and Power Down
- 5-V I/O Compatible
- High-Drive Outputs (-32 mA/64 mA)
- Typical V_{OLP} (Output Ground Bounce)
 < 0.8 V at V_{CC} = 3.3 V, T_A = 25°C
- Auto 3-State Eliminates Bus Current Loading When Voltage at the Output Exceeds V_{CC}
- Bus-Hold Data Inputs Eliminate the Need for External Pullup/Pulldown Resistors
- Power Off Disables Inputs/Outputs, Permitting Live Insertion
- Package Options Include Plastic 300-mil Shrink Small-Outline (DL), Thin Shrink Small-Outline (DGG), Thin Very Small-Outline (DGV) Packages, and 380-mil Fine-Pitch Ceramic Flat (WD) Package

description

The 'ALVTH16646 are 16-bit bus transceivers designed for 2.5-V or 3.3-V V_{CC} operation, but with the capability to provide a TTL interface to a 5-V system environment.

These devices can be used as two 8-bit transceivers or one 16-bit transceiver. Data on the A or B bus is clocked into the registers on the low-to-high transition of the appropriate clock (CLKAB or CLKBA) input. Figure 1 illustrates the four fundamental bus-management functions that can be performed with the 'ALVTH16646.

SN54ALVTH16646 . . . WD PACKAGE SN74ALVTH16646 . . . DGG, DGV, OR DL PACKAGE (TOP VIEW)

Output-enable (\overline{OE}) and direction-control (DIR) inputs are provided to control the transceiver functions. In the transceiver mode, data present at the high-impedance port may be stored in either register or in both. The select-control (SAB and SBA) inputs can multiplex stored and real-time (transparent mode) data. The circuitry used for select control eliminates the typical decoding glitch that occurs in a multiplexer during the transition between stored and real-time data. DIR determines which bus receives data when \overline{OE} is low. In the isolation mode (\overline{OE} high), A data can be stored in one register and/or B data can be stored in the other register.

When an output function is disabled, the input function is still enabled and can be used to store and transmit data. Only one of the two buses, A or B, can be driven at a time.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

Widebus is a trademark of Texas Instruments Incorporated.

SCES072A - JUNE 1996 - REVISED JULY 1996

description (continued)

Active bus-hold circuitry is provided to hold unused or floating data inputs at a valid logic level.

When V_{CC} is between 0 and 1.2 V, the device is in the high-impedance state during power up or power down. However, to ensure the high-impedance state above 1.2 V, \overline{OE} should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

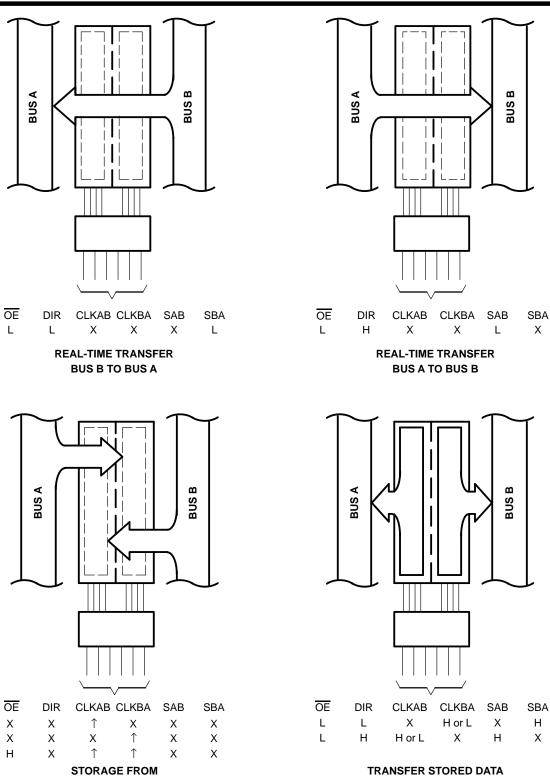
The SN74ALVTH16646 is available in TI's thin very small-outline package (DGV), which provides the same I/O pin count and functionality of standard Widebus packages in less than half the printed circuit board area.

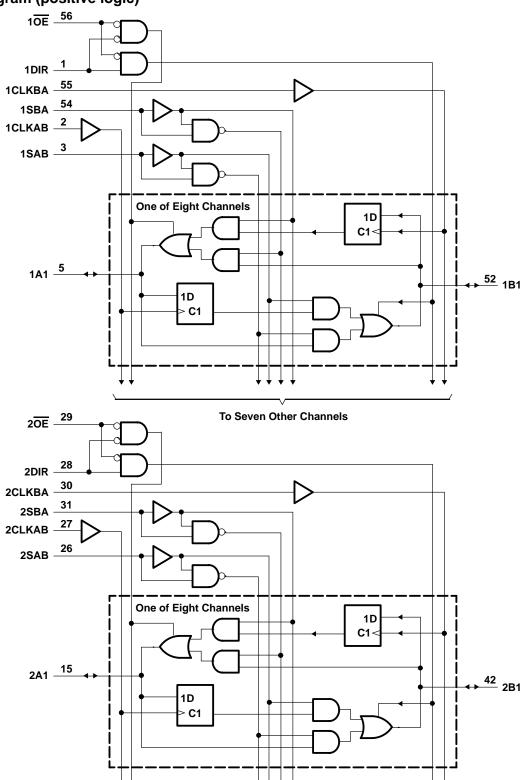
The SN54ALVTH16646 is characterized for operation over the full military temperature range of -55°C to 125°C. The SN74ALVTH16646 is characterized for operation from -40°C to 85°C.

FUNCTION TABLE

		INP	UTS			DATA	NI/OS	OPERATION OR FUNCTION
OE	DIR	CLKAB	CLKBA	SAB	SBA	A1 – A8	B1 – B8	OPERATION OR FUNCTION
Х	Х	=	X	Х	Х	Input	Unspecified [†]	Store A, B unspecified [†]
X	X	Χ	\uparrow	X	Χ	Unspecified [†]	Input	Store B, A unspecified [†]
Н	Х	1	1	Х	Х	Input	Input	Store A and B data
Н	X	H or L	H or L	Χ	Χ	Input disabled	Input disabled	Isolation, hold storage
L	L	Х	Χ	Х	L	Output	Input	Real-time B data to A bus
L	L	Χ	H or L	Χ	Н	Output	Input	Stored B data to A bus
L	Н	Х	Х	L	Х	Input	Output	Real-time A data to B bus
L	Н	H or L	Χ	Н	X	Input	Output	Stored A data to B bus

[†] The data output functions can be enabled or disabled by various signals at $\overline{\text{OE}}$ and DIR. Data input functions are always enabled; i.e., data at the bus pins is stored on every low-to-high transition of the clock inputs.




Figure 1. Bus-Management Functions

TO A AND/OR B

A, B, OR A AND B

logic diagram (positive logic)

To Seven Other Channels

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†

Supply voltage range, V _{CC}	0.5 V to 4.6 V
Input voltage range, V _I (see Note 1)	0.5 V to 7 V
Voltage range applied to any output in the high state or power-off state, VO (see	Note 1) −0.5 V to 7 V
Output current in the low state, I _O : SN54ALVTH16646	96 mA
SN74ALVTH16646	128 mA
Output current in the high state, I _O : SN54ALVTH16646	–48 mA
SN74ALVTH16646	
Input clamp current, I_{IK} ($V_I < 0$)	–50 mA
Output clamp current, I _{OK} (V _O < 0)	50 mA
Maximum power dissipation at $T_A = 55^{\circ}$ C (in still air) (see Note 2): DGG package	
DGV package	
DL package	1.4 W
Storage temperature range, T _{stg}	–65°C to 150°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

- NOTES: 1. The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.
 - 2. The maximum package power dissipation is calculated using a junction temperature of 150°C and a board trace length of 750 mils. For more information, refer to the *Package Thermal Considerations* application note in the *ABT Advanced BiCMOS Technology Data Book*.

recommended operating conditions, V_{CC} = 2.5 V \pm 0.2 V (see Note 3)

			SN54ALVT	H16646	SN74ALVTH16646		UNIT
			MIN	MAX	MIN	MAX	UNII
Vcc	Supply voltage		2.3	2.7	2.3	2.7	V
VIH	High-level input voltage		1.7		1.7		V
V _{IL}	Low-level input voltage			0.7		0.7	V
٧ _I	Input voltage		0	5.5	0	5.5	V
IOH	High-level output current			-6		-8	mA
lo.	Low-level output current			6		8	mA
lor	Low-level output current; current duty cycle ≤ 50%; f ≥	1 KHz		18		24	ША
Δt/Δν	Input transition rise or fall rate	Outputs enabled		10		10	ns/V
TA	Operating free-air temperature	_	- 55	125	-40	85	°C

NOTE 3: Unused control inputs must be held high or low to prevent them from floating.

recommended operating conditions, V_{CC} = 3.3 V \pm 0.3 V (see Note 3)

			SN54ALVT	H16646	SN74ALVT	H16646	UNIT
			MIN	MAX	MIN	MAX	ONIT
Vcc	Supply voltage		3	3.6	3	3.6	V
VIH	High-level input voltage		2		2		V
VIL	Low-level input voltage			0.8		8.0	V
٧ı	Input voltage		0	5.5	0	5.5	V
IOH	High-level output current			-24		-32	mA
	Low-level output current			24		32	mA
IOL	Low-level output current; current duty cycle ≤ 50%; f ≥	1 KHz		48		64	IIIA
Δt/Δν	Input transition rise or fall rate	Outputs enabled		10		10	ns/V
TA	Operating free-air temperature		-55	125	-40	85	°C

NOTE 3: Unused control inputs must be held high or low to prevent them from floating.

SCES072A - JUNE 1996 - REVISED JULY 1996

electrical characteristics over recommended operating free-air temperature range, V_{CC} = 2.5 V \pm 0.2 V (unless otherwise noted) (see Figure 2)

DADAMETED	TEST CONDITIONS			SN54A	LVTH166	646	SN74A	LVTH16	646	UNIT	
PARAMETER	1531	CONDITIONS		MIN	TYP [†]	MAX	MIN	TYP [†]	MAX	UNII	
VIK	V _{CC} = 2.3 V,	I _I = -18 mA				-1.2			-1.2	V	
	$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}, I_{OH} = -100 \mu\text{A}$			V _{CC} −0.2			V _{CC} −0.2				
Vон	V22V	$I_{OH} = -6 \text{ mA}$		1.7						V	
	V _{CC} = 2.3 V	I _{OH} = – 8 mA					1.7				
VoL	$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V},$	I _{OL} = 100 μA				0.2			0.2		
		IOL = 6 mA				0.5					
	V _{CC} = 2.3 V	I _{OL} = 8 mA							0.5	V	
	VCC = 2.3 V	I _{OL} = 18 mA				0.5				7	
		I _{OL} = 24 mA							0.5		
ı.	$V_{CC} = 2.7 \text{ V},$	V _I = GND	Control inputs			±1			±1		
	$V_{CC} = 0 \text{ or } 2.7 \text{ V},$	V _I = 2.7 V	Control inputs			10			10	μA	
łį	V _{CC} = 2.7 V	VI = VCC	A or B ports			10			10	0 μΑ	
	VCC = 2.7 V	V _I = 0	A or B ports			- 5			– 5		
l _{off}	$V_{CC} = 0$,	V_I or $V_O = 0$ to	4.5 V			±100			±100	μΑ	
	V _{CC} = 2.3 V	V _I = 0.7 V			90			90			
l _{l(hold)}	VCC = 2.3 V	V _I = 1.7 V	A or B ports		75			75		μΑ	
. , ,	$V_{CC} = 2.7 V^{\ddagger}$,	$V_{I} = 0 \text{ to } 2.7 \text{ V}$									
I _{EX} §	$V_{CC} = 2.3 \text{ V},$	$V_0 = 3.6 \text{ V}$								μΑ	
$I_{OZ(PU/PD)}^{\P}$	$V_{CC} \le 1.2 \text{ V},$ $V_I = \text{GND or } V_{CC},$	$\frac{V_O}{OE}$ = 0.5 V to V $\frac{V_O}{OE}$ = don't care				±100			±100	μΑ	
			Outputs high		0.04	0.09		0.04	0.09		
loo	$V_{CC} = 2.7 \text{ V}, I_{O} = 0$,	Outputs low		2.3	4.5		2.3	4.5	mA	
lcc	$V_I = V_{CC}$ or GND		Outputs disabled		0.04	0.09		0.04	0.09	IIIA	
Ci	V _{CC} = 2.5 V,	V _I = 2.5 V or 0			3			3		pF	
C _{io}	V _{CC} = 2.5 V,	V _O = 2.5 V or 0			9			9		pF	

[†] All typical values are at $V_{CC} = 2.5 \text{ V}$, $T_A = 25^{\circ}\text{C}$.

[‡]This is the bus-hold maximum dynamic current required to switch the input from one state to another.

 $[\]$ Current into an output in the high state when $\mbox{V}_{\mbox{\scriptsize O}} > \mbox{V}_{\mbox{\scriptsize CC}}$

[¶] High-impedance state during power up/high-impedance state during power down

PRODUCT PREVIEW

electrical characteristics over recommended operating free-air temperature range, V_{CC} = 3.3 V \pm 0.3 V (unless otherwise noted) (see Figure 3)

DADAMETED	TEST CONDITIONS			SN54A	LVTH16	646	SN74A	LVTH166	646	UNIT
PARAMETER	159	I CONDITIONS		MIN	TYP [†]	MAX	MIN	TYP†	MAX	UNII
VIK	V _{CC} = 3 V,	I _I = -18 mA				-1.2			-1.2	V
	$V_{CC} = 3 \text{ V to } 3.6 \text{ V},$	I _{OH} = -100 μA		V _{CC} −0.2			V _{CC} -0.2			
Voн	V 2V	$I_{OH} = -24 \text{ mA}$	– 24 mA							V
	$^{\text{CC}}$ = 3 $^{\text{A}}$	$I_{OH} = -32 \text{ mA}$					2			
	$V_{CC} = 3 \text{ V to } 3.6 \text{ V},$	I _{OL} = 100 μA				0.2			0.2	
		I _{OL} = 16 mA							0.4	
\/a:		I _{OL} = 24 mA				0.5				V
VOL	$V_{CC} = 3 V$	I _{OL} = 32 mA							0.5	V
		I _{OL} = 48 mA				0.55				1
		I _{OL} = 64 mA	mA					0.55		
	V _{CC} = 3.6 V, V _I = VCC or GND		Control inputs			±1			±1	
	$V_{CC} = 0 \text{ or } 3.6 \text{ V},$	V _I = 5.5 V	Control inputs			10		-	10	μА
Ιį		V _I = 5.5 V				20			20	
	V _{CC} = 3.6 V	VI = VCC	A or B ports			10			10	
		V _I = 0				- 5			– 5	
l _{off}	$V_{CC} = 0$,	V_I or $V_O = 0$ to	4.5 V			±100			±100	μΑ
	V00 = 3 V	V _I = 0.8 V		75			75			
l _l (hold)	VCC = 3 V	V _I = 2 V	A or B ports	-75			-75			μΑ
	$V_{CC} = 3.6 V^{\ddagger}$,	$V_{I} = 0 \text{ to } 3.6 \text{ V}$				±500			±500	
I _{EX} §	$V_{CC} = 3 V$,	$V_0 = 5.5 \text{ V}$				125			125	μΑ
IOZ(PU/PD) [¶]	$V_{CC} \le 1.2 \text{ V},$ $V_I = \text{GND or } V_{CC},$	$\frac{V_O}{OE} = 0.5 \text{ V to V}$ $\frac{V_O}{OE} = \text{don't care}$	CC,			±100			±100	μΑ
			Outputs high		0.07	0.09		0.07	0.09	
lcc	$V_{CC} = 3.6 \text{ V}, I_{O} = 0$),	Outputs low		3.2	5		3.2	5	mA
100	$V_I = V_{CC}$ or GND		Outputs disabled		0.07	0.09		0.07	0.09	IIIA
∆l _{CC} #	V_{CC} = 3 V to 3.6 V, One input at V_{CC} –0.6 V, Other inputs at V_{CC} or GND				0.2			0.2	mA	
C _i	$V_{CC} = 3.3 \text{ V},$	V _I = 3.3 V or 0			3			3		pF
C _{io}	$V_{CC} = 3.3 \text{ V},$	$V_0 = 3.3 \text{ V or } 0$)		9			9		pF

[†] All typical values are at $V_{CC} = 3.3 \text{ V}$, $T_A = 25^{\circ}\text{C}$.

[‡] This is the bus-hold maximum dynamic current required to switch the input from one state to another.

[§] Current into an output in the high state when $V_O > V_{CC}$

[¶] High-impedance state during power up/high-impedance state during power down

[#] This is the increase in supply current for each input that is at the specified TTL voltage level rather than V_{CC} or GND.

SCES072A - JUNE 1996 - REVISED JULY 1996

timing requirements over recommended operating free-air temperature range, V_{CC} = 2.5 V \pm 0.2 V (unless otherwise noted) (see Figure 2)

			SN54ALVT	H16646	SN74ALVT	H16646	UNIT	
			MIN	MAX	MIN	MAX	UNII	
fclock	Clock frequency		0	150	0	150	MHz	
t _W	Pulse duration, CLK high or low		1.5		1.5		ns	
	Setup time, A or B before CLKAB↑ or CLKBA↑	Data high	2.5		2.5			
t _{su}	Setup time, A of B before CLKAB1 of CLKBA1	Data low	2.6		2.6		ns	
	Hold time, A or B after CLKAB↑ or CLKBA↑	Data high	0		0		ns	
th	HOID LITTLE, A OF B AILER CLAAB FOR CLABA	Data low	0	·	0			

timing requirements over recommended operating free-air temperature range, V_{CC} = 3.3 V \pm 0.3 V (unless otherwise noted) (see Figure 3)

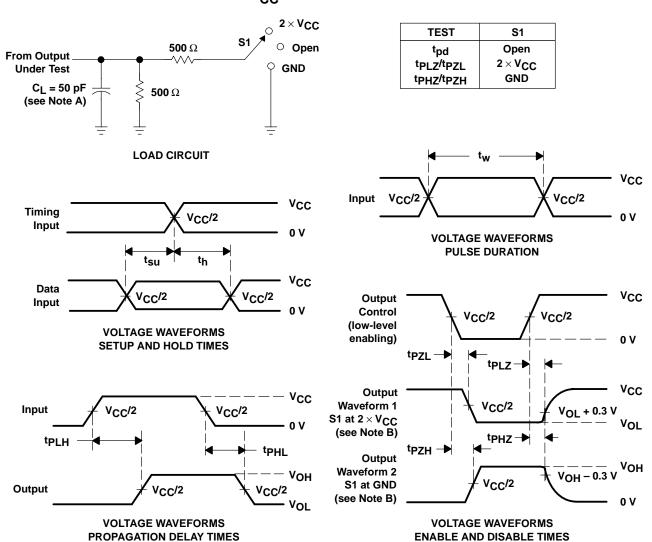
			SN54ALVT	H16646	SN74ALVT	H16646	UNIT	
			MIN	MAX	MIN	MAX	UNIT	
f _{clock}	Clock frequency		0	150	0	150	MHz	
t _W	Pulse duration, CLK high or low		1.5		1.5		ns	
	Setup time, A or B before CLKAB↑ or CLKBA↑		2.1		2.1			
t _{su}	Setup time, A of B before CLKAB For CLKBA	Data low	2.2		2.2		ns	
	Hold time, A or B after CLKAB↑ or CLKBA↑	Data high	0		0		\top	
th	HOW WITE, A OF BAILET CLAAB! OF CLABA!	Data low	0		0		ns	

RODUCT PREVIEW

switching characteristics over recommended operating free-air temperature range, C_L = 50 pF, V_{CC} = 2.5 V \pm 0.2 V (unless otherwise noted) (see Figure 2)

PARAMETER	FROM	то	SN54ALVT	H16646	SN74ALVTH16646			UNIT
PARAMETER	(INPUT)	(OUTPUT)	MIN	MAX	MIN	TYP [†]	MAX	UNIT
f _{max}			150		150			MHz
	A or B	B or A	1.2	4.5	1.2	2.3	4.1	
t _{pd}	CLKBA or CLKAB	A or B	1.5	6.1	1.5	3	5.5	ns
·	SBA or SAB‡	A or B	1.5	6.6	1.5	3.4	6	
t _{en}	ŌĒ	A or B	2	7.1	2	3.4	6.4	ns
^t dis	ŌĒ	A or B	2	7.8	2	4.2	7.1	ns
t _{en}	DIR	A or B	2	7.2	2	3.5	6.5	ns
^t dis	DIR	A or B	2	7.9	2	4.3	7.1	ns

[†] All typical values are at $V_{CC} = 2.5 \text{ V}$, $T_A = 25^{\circ}\text{C}$.


switching characteristics over recommended operating free-air temperature range, C_L = 50 pF, V_{CC} = 3.3 V \pm 0.3 V (unless otherwise noted) (see Figure 3)

PARAMETER	FROM	то	SN54ALVT	H16646	SN74ALVTH16646			UNIT
PARAMETER	(INPUT)	(OUTPUT)	MIN	MAX	MIN	TYP§	MAX	UNII
f _{max}			150		150			MHz
	A or B	B or A	1	3.1	1	1.8	2.8	
t _{pd}	CLKBA or CLKAB	A or B		3.8		2.4	3.4	ns
·	SBA or SAB‡	A or B	1.4	4.4	1.4	2.4	4	
t _{en}	ŌĒ	A or B	1	4.9	1	2.6	4.4	ns
t _{dis}	ŌĒ	A or B	1.5	6	1.5	3.4	5.4	ns
t _{en}	DIR	A or B	1	5	1	2.6	4.5	ns
^t dis	DIR	A or B	1.5	6	1.5	3.5	5.4	ns

[‡] These parameters are measured with the internal output state of the storage register opposite that of the bus input.

[§] All typical values are at V_{CC} = 3.3 V, T_A = 25°C. ‡ These parameters are measured with the internal output state of the storage register opposite that of the bus input.

PARAMETER MEASUREMENT INFORMATION V_{CC} = 2.5 $V \pm 0.2 V$

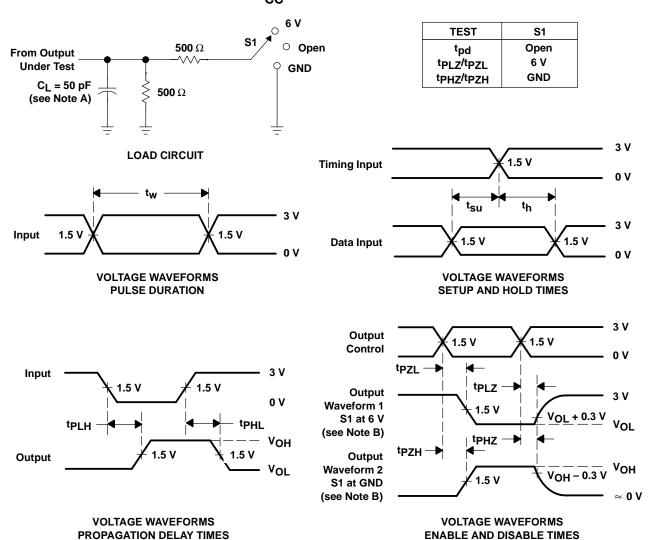

- NOTES: A. C_I includes probe and jig capacitance.
 - B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
 - All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, $Z_O = 50 \Omega$, $t_f \leq$ 2.5 ns. $t_f \leq$ 2.5 ns.
 - D. The outputs are measured one at a time with one transition per measurement.
 - E. tpLZ and tpHZ are the same as tdis.
 - F. tpzL and tpzH are the same as ten.
 - G. tpLH and tpHL are the same as tpd.

Figure 2. Load Circuit and Voltage Waveforms

LOW- AND HIGH-LEVEL ENABLING

PARAMETER MEASUREMENT INFORMATION V_{CC} = 3.3 V \pm 0.3 V

NOTES: A. C_I includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, $Z_O = 50 \Omega$, $t_r \leq 2.5$ ns, $t_f \leq 2.5$ ns.
- D. The outputs are measured one at a time with one transition per measurement.
- E. tpLz and tpHz are the same as tdis.

INVERTING AND NONINVERTING OUTPUTS

- F. tpzL and tpzH are the same as ten.
- G. tpLH and tpHL are the same as tpd.

Figure 3. Load Circuit and Voltage Waveforms

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any semiconductor product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

TI warrants performance of its semiconductor products and related software to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

Certain applications using semiconductor products may involve potential risks of death, personal injury, or severe property or environmental damage ("Critical Applications").

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS.

Inclusion of TI products in such applications is understood to be fully at the risk of the customer. Use of TI products in such applications requires the written approval of an appropriate TI officer. Questions concerning potential risk applications should be directed to TI through a local SC sales office.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards should be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or services described herein. Nor does TI warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used.

Copyright © 1996, Texas Instruments Incorporated