OEAB L

LEAB [

A1 🛮 3

GND II 4

A3 🛮 6

A4 🛮 8

A6 10

A8 **∏** 13

 v_{cc}

GND [

A7 📗

A9 114

A10

A11

A12 ∏ 17

GND [

A13 **∏** 19

A14 20

A15 21

V_{CC} 1 22

A16 23

A17 24

GND ∏ 25

A18

LEBA ∏28

ОЕВА П

26

27

A2 🛮 5

A5 🛮 9

11

12

15

18

SN54ALVTH16501 . . . WD PACKAGE

SN74ALVTH16501 . . . DGG, DGV, OR DL PACKAGE

(TOP VIEW)

SCES071A - JUNE 1996 - REVISED JULY 1996

56 ∏ GND

54 B1 53 GND

52 B2

51 B3

49 **∏** B4

48 🛮 B5

47 ¶ B6

45 **B**7

44 N B8

43 B9

42 B10

41 **∏** B11

40 **∏** B12

39 **∏** GND

38 **∏** B13

37 B14

36 **□** B15

35 V_{CC}

34 **□** B16

33 B17

32 | GND

31 **B**18

29 **∏** GND

30 CLKBA

46 ∏ GND

50 V_{CC}

55 CLKAB

- Members of the Texas Instruments
 Widebus™ Family
- High-Impedance State During Power Up and Power Down
- 5-V I/O Compatible
- High-Drive Outputs (-32 mA/64 mA)
- Typical V_{OLP} (Output Ground Bounce)
 < 0.8 V at V_{CC} = 3.3 V, T_A = 25°C
- Auto 3-State Eliminates Bus Current Loading When Voltage at the Output Exceeds V_{CC}
- Bus-Hold Data Inputs Eliminate the Need for External Pullup/Pulldown Resistors
- Power Off Disables Inputs/Outputs, Permitting Live Insertion
- Package Options Include Plastic 300-mil Shrink Small-Outline (DL), Thin Shrink Small-Outline (DGG), Thin Very Small-Outline (DGV) Packages, and 380-mil Fine-Pitch Ceramic Flat (WD) Package

description

The 'ALVTH16501 are 18-bit universal bus transceivers designed for 2.5-V or 3.3-V V_{CC} operation, but with the capability to provide a TTL interface to a 5-V system environment.

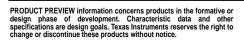
Data flow in each direction is controlled by output-enable (OEAB and OEBA), latch-enable (LEAB and LEBA), and clock (CLKAB and CLKBA) inputs. For A-to-B data flow, the devices operate in the transparent mode when LEAB is

high. When LEAB is low, the A data is latched if CLKAB is held at a high or low logic level. If LEAB is low, the A-bus data is stored in the latch/flip-flop on the low-to-high transition of CLKAB. When OEAB is high, the B-port outputs are active. When OEAB is low, the B-port outputs are in the high-impedance state.

Data flow for B to A is similar to that of A to B but uses $\overline{\text{OEBA}}$, LEBA, and CLKBA. The output enables are complementary (OEAB is active high and $\overline{\text{OEBA}}$ is active low).

Active bus-hold circuitry is provided to hold unused or floating data inputs at a valid logic level.

When V_{CC} is between 0 and 1.2 V, the device is in the high-impedance state during power up or power down. However, to ensure the high-impedance state above 1.2 V, \overline{OE} should be tied to V_{CC} through a pullup resistor and OE should be tied to GND through a pulldown resistor; the minimum value of the resistor is determined by the current-sinking/current-sourcing capability of the driver.



Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

Widebus is a trademark of Texas Instruments Incorporated.

TEXAS INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

Copyright © 1996, Texas Instruments Incorporated

SCES071A - JUNE 1996 - REVISED JULY 1996

description (continued)

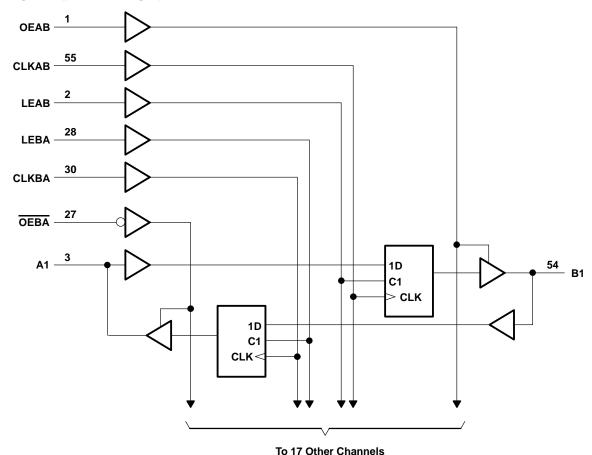
The SN74ALVTH16501 is available in TI's thin very small-outline package (DGV), which provides the same I/O pin count and functionality of standard Widebus packages in less than half the printed circuit board area.

The SN54ALVTH16501 is characterized for operation over the full military temperature range of –55°C to 125°C. The SN74ALVTH16501 is characterized for operation from –40°C to 85°C.

FUNCTION TABLE†

	INP	UTS		OUTPUT
OEAB	LEAB	CLKAB	Α	В
L	Х	Х	Χ	Z
Н	Н	Χ	L	L
Н	Н	Χ	Н	Н
Н	L	\uparrow	L	L
Н	L	\uparrow	Н	Н
Н	L	Н	Χ	в ₀ ‡ в ₀ §
Н	L	L	Χ	В ₀ §

[†] A-to-B data flow is shown; B-to-A flow is similar but uses OEBA, LEBA, and CLKBA.



[‡] Output level before the indicated steady-state input conditions were established, provided that CLKAB was high before LEAB went low

[§] Output level before the indicated steady-state input conditions were established

SCES071A - JUNE 1996 - REVISED JULY 1996

logic diagram (positive logic)

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†

Supply voltage range, V _{CC}	
Input voltage range, V _I (see Note 1)	0.5 V to 7 V
Voltage range applied to any output in the high state or power-off st	tate, V_O (see Note 1) $-0.5 V$ to $7 V$
Output current in the low state, IO: SN54ALVTH16501	96 mA
SN74ALVTH16501	128 mA
Output current in the high state, IO: SN54ALVTH16501	–48 mA
SN74ALVTH16501	–64 mA
Input clamp current, I _{IK} (V _I < 0)	
Output clamp current, I _{OK} (V _O < 0)	
Maximum power dissipation at T _A = 55°C (in still air) (see Note 2): [DGG package 1 W
	DGV package 1 W
Γ	DL package1.4 W
Storage temperature range, T _{stg}	

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.

2. The maximum package power dissipation is calculated using a junction temperature of 150°C and a board trace length of 750 mils. For more information, refer to the *Package Thermal Considerations* application note in the *ABT Advanced BiCMOS Technology Data Book*.

SN54ALVTH16501, SN74ALVTH16501 2.5-V/3.3-V 18-BIT UNIVERSAL BUS TRANSCEIVERS

SCES071A - JUNE 1996 - REVISED JULY 1996

recommended operating conditions, $V_{\mbox{CC}}$ = 2.5 V \pm 0.2 V (see Note 3)

			SN54ALVT	H16501	SN74ALVT	H16501	UNIT
			MIN	MAX	MIN	MAX	UNII
VCC	Supply voltage		2.3	2.7	2.3	2.7	V
٧ _{IH}	High-level input voltage		1.7		1.7		V
٧ _{IL}	Low-level input voltage			0.7		0.7	V
٧ _I	Input voltage		0	5.5	0	5.5	V
loh	High-level output current			-6		-8	mA
I	Low-level output current			6		8	mA
IOL	Low-level output current; current duty cycle \leq 50%; f \geq	1 KHz		18		24	IIIA
Δt/Δν	Input transition rise or fall rate	Outputs enabled		10		10	ns/V
TA	Operating free-air temperature	_	- 55	125	-40	85	°C

NOTE 3: Unused control inputs must be held high or low to prevent them from floating.

recommended operating conditions, $V_{\mbox{\footnotesize{CC}}}$ = 3.3 V \pm 0.3 V (see Note 3)

			SN54ALVT	H16501	SN74ALVT	H16501	UNIT
			MIN	MAX	MIN	MAX	UNIT
VCC	Supply voltage		3	3.6	3	3.6	V
V_{IH}	High-level input voltage		2		2		V
V_{IL}	Low-level input voltage			0.8		0.8	V
٧ _I	Input voltage		0	5.5	0	5.5	V
ІОН	High-level output current			-24		-32	mA
10.	Low-level output current			24		32	mA
IOL	Low-level output current; current duty cycle ≤ 50%; f ≥	1 KHz		48		64	ША
Δt/Δν	Input transition rise or fall rate	Outputs enabled		10		10	ns/V
T_A	Operating free-air temperature		– 55	125	-40	85	°C

NOTE 3: Unused control inputs must be held high or low to prevent them from floating.

SCES071A - JUNE 1996 - REVISED JULY 1996

electrical characteristics over recommended operating free-air temperature range, V_{CC} = 2.5 V \pm 0.2 V (unless otherwise noted) (see Figure 1)

DADAMETED	TEC	CONDITIONS		SN54A	LVTH16	501	SN74A	LVTH165	501	UNIT
PARAMETER	1531	CONDITIONS		MIN	TYP [†]	MAX	MIN	TYP†	MAX	UNII
٧ıK	$V_{CC} = 2.3 \text{ V},$	$I_{I} = -18 \text{ mA}$				-1.2			-1.2	V
	$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V},$	$I_{OH} = -100 \mu A$		V _{CC} -0.2			V _{CC} -0.2			
Voн	V _{CC} = 2.3 V	$I_{OH} = -6 \text{ mA}$		1.7						V
	vCC = 2.5 v	$I_{OH} = -8 \text{ mA}$					1.7			
	$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V},$	$I_{OL} = 100 \mu\text{A}$				0.2			0.2	
		$I_{OL} = 6 \text{ mA}$				0.5				
V_{OL}	V _{CC} = 2.3 V	$I_{OL} = 8 \text{ mA}$							0.5	V
	VCC = 2.5 V	I _{OL} = 18 mA				0.5				
		$I_{OL} = 24 \text{ mA}$							0.5	
	$V_{CC} = 2.7 \text{ V},$	$V_I = GND$	Control inputs			±1			±1	
l _l	$V_{CC} = 0 \text{ or } 2.7 \text{ V},$	$V_{I} = 2.7 V$	Control inputs			10			10	μΑ
'1	V _{CC} = 2.7 V	$V_I = V_{CC}$	A or B ports			10			10	, ,,,
	VCC = 2.7 V	V _I = 0	A or B ports			- 5			10 -5	
l _{off}	$V_{CC} = 0$,	V_I or $V_O = 0$ to	4.5 V			±100			±100	μΑ
	V _{CC} = 2.3 V	V _I = 0.7 V			90			90		
l _{l(hold)}		V _I = 1.7 V	A or B ports		75			75		μΑ
	$V_{CC} = 2.7 V^{\ddagger}$,	$V_{I} = 0 \text{ to } 2.7 \text{ V}$								
I _{EX} §	$V_{CC} = 2.3 \text{ V},$	V _O = 3.6 V								μΑ
IOZ(PU/PD)¶	$V_{CC} \le 1.2 \text{ V},$ $V_I = \text{GND or } V_{CC},$	$\frac{\text{VO}}{\text{OE}/\text{OE}} = 0.5 \text{ V to V}$				±100			±100	μΑ
			Outputs high		0.04	0.09		0.04	0.09	
lcc	$V_{CC} = 2.7 \text{ V}, I_{O} = 0,$,	Outputs low		2.3	4.5		2.3	4.5	mA
icc	$V_I = V_{CC}$ or GND		Outputs disabled		0.04	0.09		0.04	0.09	ША
Ci	V _{CC} = 2.5 V,	V _I = 2.5 V or 0			3			3		pF
C _{io}	$V_{CC} = 2.5 \text{ V},$	$V_0 = 2.5 \text{ V or } 0$			9			9		pF

[†] All typical values are at $V_{CC} = 2.5 \text{ V}$, $T_A = 25^{\circ}\text{C}$.

[‡] This is the bus-hold maximum dynamic current required to switch the input from one state to another.

SCES071A - JUNE 1996 - REVISED JULY 1996

electrical characteristics over recommended operating free-air temperature range, V_{CC} = 3.3 V \pm 0.3 V (unless otherwise noted) (see Figure 2)

DADAMETED	TEO	T CONDITIONS		SN54A	LVTH16	501	SN74A	LVTH16	501	LINIT	
PARAMETER	159	T CONDITIONS		MIN	TYP [†]	MAX	MIN	TYP [†]	MAX	UNIT	
VIK	V _{CC} = 3 V,	I _I = -18 mA				-1.2			-1.2	V	
	$V_{CC} = 3 \text{ V to } 3.6 \text{ V},$	I _{OH} = -100 μA		V _{CC} -0.2			V _{CC} -0.2				
Voн	VCC = 3 V	$I_{OH} = -24 \text{ mA}$		2						V	
	ACC = 2 A	$I_{OH} = -32 \text{ mA}$					2				
	$V_{CC} = 3 \text{ V to } 3.6 \text{ V},$	$I_{OL} = 100 \mu A$				0.2			0.2		
		I _{OL} = 16 mA							0.4		
Va		I _{OL} = 24 mA				0.5				٧	
VOL	V _{CC} = 3 V	I _{OL} = 32 mA							0.5	V	
		I _{OL} = 48 mA				0.55					
		$I_{OL} = 64 \text{ mA}$						0.55			
	$V_{CC} = 3.6 \text{ V}, V_I = V_I$	/CC or GND	Control inputs			±1			±1		
	$V_{CC} = 0 \text{ or } 3.6 \text{ V},$	V _I = 5.5 V	Control inputs			10		-	10	μΑ	
lį		V _I = 5.5 V				20			20		
	V _{CC} = 3.6 V	$V_I = V_{CC}$	A or B ports			10			10		
		V _I = 0				- 5			- 5		
l _{off}	$V_{CC} = 0$,	V_I or $V_O = 0$ to	4.5 V			±100			±100	μΑ	
	V2V	V _I = 0.8 V		75			75				
l _{l(hold)}	VCC = 3 V	V _I = 2 V	A or B ports	-75			-75			μΑ	
	$V_{CC} = 3.6 V^{\ddagger}$,	V _I = 0 to 3.6 V				±500			±500		
ΙΕΧ [§]	V _{CC} = 3 V,	V _O = 5.5 V				125			125	μΑ	
loz(PU/PD)¶	$V_{CC} \le 1.2 \text{ V},$ $V_I = \text{GND or } V_{CC},$	$\frac{V_O}{OE/OE} = 0.5 \text{ V to V}$	CC [,] care			±100			±100	μΑ	
			Outputs high		0.07	0.09		0.07	0.09		
loo	$V_{CC} = 3.6 \text{ V},$	$I_{O} = 0$,	Outputs low		3.2	5		3.2	5	mA	
Icc	V _I = V _{CC} or GND		Outputs disabled		0.07	0.09		0.07	0.09	IIIA	
Δl _{CC} #	$V_{CC} = 3 \text{ V to } 3.6 \text{ V},$ Other inputs at V_{CC} of	One input at Voor GND	CC -0.6 V,			0.2			0.2	mA	
C _i	V _{CC} = 3.3 V,	V _I = 3.3 V or 0			3			3		pF	
C _{io}	$V_{CC} = 3.3 \text{ V},$	$V_{O} = 3.3 \text{ V or } 0$)		9			9		pF	

[†] All typical values are at $V_{CC} = 3.3 \text{ V}$, $T_A = 25^{\circ}\text{C}$.

[‡] This is the bus-hold maximum dynamic current required to switch the input from one state to another.

 $[\]S$ Current into an output in the high state when $V_O > V_{CC}$

[¶] High-impedance state during power up/high-impedance state during power down

[#]This is the increase in supply current for each input that is at the specified TTL voltage level rather than VCC or GND.

SCES071A - JUNE 1996 - REVISED JULY 1996

timing requirements over recommended operating free-air temperature range, V_{CC} = 2.5 V \pm 0.2 V (unless otherwise noted) (see Figure 1)

			SN54ALVT			H16501	UNIT
			MIN	MAX	MIN	MAX	UNII
fclock	Clock frequency		0	150	0	150	MHz
	Pulse duration	LE high	1.5		1.5		
t _W		CLK high or low	1.5		1.5		ns
		A or B before CLK↑, Data high	2.3		2.3		
 	Catura tima	A or B before CLK↑, Data low	3.4		3.4		ns
t _{su}	Setup time	A or B before LE↓, CLK high	-0.4		-0.4		
		A or B before LE↓, CLK low	0.9		0.9		
		A or B after CLK↑, Data high	0		0		
.		A or B after CLK↑, Data low	-0.7		-0.7		20
^t h	Hold time	A or B after LE↓, CLK high	2		2		ns
		A or B after LE↓, CLK low	0.3		0.3		

timing requirements over recommended operating free-air temperature range, V $_{CC}$ = 3.3 V \pm 0.3 V (unless otherwise noted) (see Figure 2)

			SN54ALVT			SN74ALVTH16501		
			MIN	MAX	MIN	MAX	UNIT	
fclock	Clock frequency		0	150	0	150	MHz	
	Dulas dunation	LE high	1.5		1.5			
t _W	Pulse duration	CLK high or low	1.5		1.5		ns	
	A or B before CLK↑, Data hig	A or B before CLK↑, Data high	1.9		1.9			
l	Catum times	A or B before CLK↑, Data low	2.5		2.5		ns	
t _{su}	Setup time	A or B before LE↓, CLK high	0		0			
	Setup time	A or B before LE↓, CLK low	0.3		0.3			
		A or B after CLK↑, Data high	0		0			
	Hold time	A or B after CLK↑, Data low	0		0			
t _h	Hola time	A or B after LE↓, CLK high	1.8		1.8		ns	
		A or B after LE↓, CLK low	1.2		1.2			

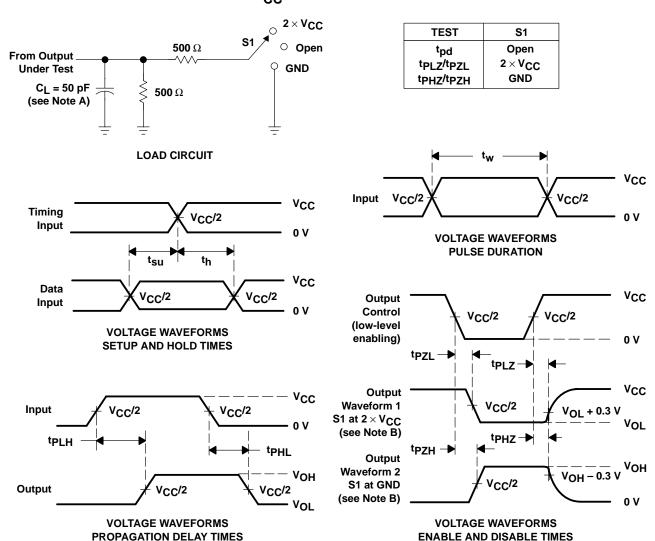
SCES071A - JUNE 1996 - REVISED JULY 1996

switching characteristics over recommended operating free-air temperature range, C_L = 50 pF, V_{CC} = 2.5 V \pm 0.2 V (unless otherwise noted) (see Figure 1)

PARAMETER	FROM (INPUT) (OL	то	SN54ALVT	SN74	UNIT			
PARAMETER		(OUTPUT)	MIN	MAX	MIN	TYP [†]	MAX	UNII
f _{max}			150		150			MHz
	B or A	A or B	1	5	1	2.5	4.5	
t _{pd}	LEBA or LEAB	A or B	2	7.2	2	3.8	6.5	ns
	CLKBA or CLKAB	A or B	2	7.7	2	3.2	7	
t _{en}	OEBA or OEAB	A or B	2.5	7.7	2.5	4.8	6.9	ns
^t dis	OEBA or OEAB	A or B	2	7.7	2	4.1	6.9	ns

[†] All typical values are at $V_{CC} = 2.5 \text{ V}$, $T_A = 25^{\circ}\text{C}$.

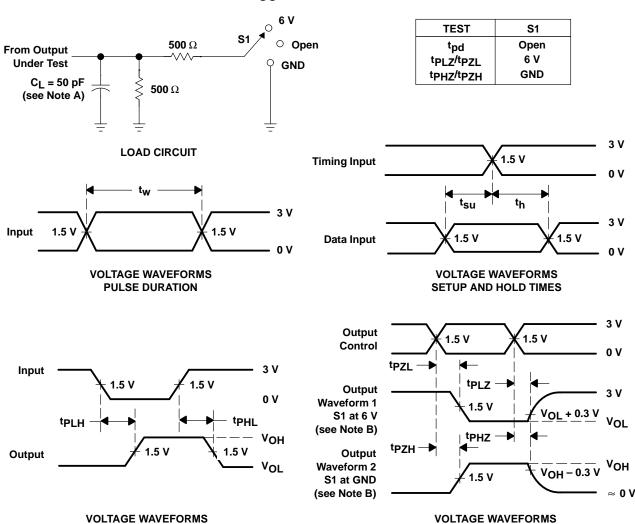
switching characteristics over recommended operating free-air temperature range, C_L = 50 pF, V_{CC} = 3.3 V \pm 0.3 V (unless otherwise noted) (see Figure 2)


PARAMETER	FROM (INPUT)	то	SN54ALVTH16501		SN74ALVTH16501			UNIT
		(OUTPUT)	MIN	MAX	MIN	TYP [‡]	MAX	UNIT
f _{max}			150		150			MHz
	B or A	A or B	1	3.5	1	2	3.1	
t _{pd}	LEBA or LEAB	A or B	1.5	6	1.5	3.2	5.4	ns
	CLKBA or CLKAB	A or B	1.5	4.8	1.5	2.6	4.3	
t _{en}	OEBA or OEAB	A or B	1.5	6.2	1.5	3.5	5.6	ns
^t dis	OEBA or OEAB	A or B	2	5.4	2	3.2	4.9	ns

[‡] All typical values are at V_{CC} = 3.3 V, T_A = 25°C.

RODUCT PREVIEW

PARAMETER MEASUREMENT INFORMATION V_{CC} = 2.5 V \pm 0.2 V


NOTES: A. C_I includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, $Z_{O} = 50 \Omega$, $t_{f} \leq 2.5$ ns. $t_{f} \leq 2.5$ ns.
- D. The outputs are measured one at a time with one transition per measurement.
- E. tpLZ and tpHZ are the same as tdis.
- F. tpzL and tpzH are the same as ten.
- G. tpLH and tpHL are the same as tpd.

Figure 1. Load Circuit and Voltage Waveforms

PRODUCT PREVIEW

PARAMETER MEASUREMENT INFORMATION V_{CC} = 3.3 V \pm 0.3 V

PROPAGATION DELAY TIMES INVERTING AND NONINVERTING OUTPUTS

ENABLE AND DISABLE TIMES LOW- AND HIGH-LEVEL ENABLING

NOTES: A. C_I includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, $Z_O = 50 \Omega$, $t_f \leq$ 2.5 ns, $t_f \leq$ 2.5 ns.
- D. The outputs are measured one at a time with one transition per measurement.
- E. tpLz and tpHz are the same as tdis.
- F. tpzL and tpzH are the same as ten.
- G. tpLH and tpHL are the same as tpd.

Figure 2. Load Circuit and Voltage Waveforms

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any semiconductor product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

TI warrants performance of its semiconductor products and related software to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

Certain applications using semiconductor products may involve potential risks of death, personal injury, or severe property or environmental damage ("Critical Applications").

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS.

Inclusion of TI products in such applications is understood to be fully at the risk of the customer. Use of TI products in such applications requires the written approval of an appropriate TI officer. Questions concerning potential risk applications should be directed to TI through a local SC sales office.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards should be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or services described herein. Nor does TI warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used.

Copyright © 1996, Texas Instruments Incorporated