SN54ALVTH16500 . . . WD PACKAGE

SN74ALVTH16500 . . . DGG, DGV, OR DL PACKAGE

(TOP VIEW)

SCES069A - JUNE 1996 - REVISED JULY 1996

- Members of the Texas Instruments Widebus™ Family
- High-Impedance State During Power Up and Power Down
- 5-V I/O Compatible
- High-Drive Outputs (-32 mA/64 mA)
- Typical V_{OLP} (Output Ground Bounce)
 0.8 V at V_{CC} = 3.3 V, T_A = 25°C
- Auto 3-State Eliminates Bus Current Loading When Voltage at the Output Exceeds V_{CC}
- Bus-Hold Data Inputs Eliminate the Need for External Pullup/Pulldown Resistors
- Power Off Disables Inputs/Outputs, Permitting Live Insertion
- Package Options Include Plastic 300-mil Shrink Small-Outline (DL), Thin Shrink Small-Outline (DGG), Thin Very Small-Outline (DGV) Packages, and 380-mil Fine-Pitch Ceramic Flat (WD) Package

description

The 'ALVTH16500 are 18-bit universal bus transceivers designed for 2.5-V or 3.3-V V_{CC} operation, but with the capability to provide a TTL interface to a 5-V system environment.

Data flow in each direction is controlled by output-enable (OEAB and OEBA), latch-enable (LEAB and LEBA), and clock (CLKAB and CLKBA) inputs. For A-to-B data flow, the device operates in the transparent mode when LEAB is

high. When LEAB is low, the A data is latched if CLKAB is held at a high or low logic level. If LEAB is low, the A-bus data is stored in the latch/flip-flop on the high-to-low transition of CLKAB. Output-enable OEAB is active high. When OEAB is high, the B-port outputs are active. When OEAB is low, the B-port outputs are in the high-impedance state.

Data flow for B to A is similar to that of A to B but uses $\overline{\text{OEBA}}$, LEBA, and $\overline{\text{CLKBA}}$. The output enables are complementary (OEAB is active high and $\overline{\text{OEBA}}$ is active low).

Active bus-hold circuitry is provided to hold unused or floating data inputs at a valid logic level.

When V_{CC} is between 0 and 1.2 V, the device is in the high-impedance state during power up or power down. However, to ensure the high-impedance state above 1.2 V, \overline{OE} should be tied to V_{CC} through a pullup resistor and OE should be tied to GND through a pulldown resistor; the minimum value of the resistor is determined by the current-sinking/current-sourcing capability of the driver.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

Widebus is a trademark of Texas Instruments Incorporated.

PRODUCT PREVIEW information concerns products in the formative or design phase of development. Characteristic data and other specifications are design goals. Texas Instruments reserves the right to change or discontinue these products without notice.

TEXAS INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

d CLKBA. The output enables are at a valid logic level. the during power up or power downed to V_{CC} through a pullup resistor lue of the resistor is determined by

31 **∏** B18

29 | GND

30 CLKBA

56 GND OEAB [] LEAB 2 55 CLKAB 54 🛮 B1 A1 🛮 3 GND 4 53 GND A2 🛮 5 52**∏** B2 51 **∏** B3 A3 | 6 V_{CC} \square 7 50 V_{CC} A4 🛮 8 49 🛮 B4 A5 🛮 9 48 ∏ B5 47 ∏ B6 A6 | 10 GND [] 11 46 GND 45 **∏** B7 A7 🛮 12 44**∏** B8 A8 🛮 13 A9 🛮 14 43 **∏** B9 A10 **∏** 15 42**∏** B10 A11 16 41 ∏ B11 A12 17 40 B12 GND [] 18 39 **∏** GND A13 19 38 **∏** B13 A14 **□** 20 37 B14 A15 21 36 B15 V_{CC} ☐ 22 35 V_{CC} A16 23 34 🛮 B16 A17 🛮 24 33 **∏** B17 GND 25 32 GND

A18 26

OEBA

☐ 27

LEBA 28

SCES069A - JUNE 1996 - REVISED JULY 1996

description (continued)

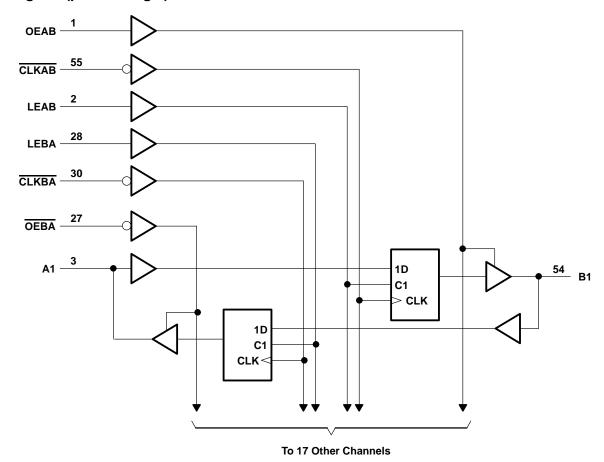
The SN74ALVTH16500 is available in TI's thin very small-outline package (DGV), which provides the same I/O pin count and functionality of standard Widebus packages in less than half the printed circuit board area.

The SN54ALVTH16500 is characterized for operation over the full military temperature range of –55°C to 125°C. The SN74ALVTH16500 is characterized for operation from –40°C to 85°C.

FUNCTION TABLE†

	INP	UTS		OUTPUT
OEAB	LEAB	CLKAB	Α	В
L	Х	Х	Χ	Z
Н	Н	Χ	L	L
Н	Н	Χ	Н	Н
Н	L	\downarrow	L	L
Н	L	\downarrow	Н	Н
Н	L	Н	Χ	В ₀ ‡
Н	L	L	Χ	В ₀ §

[†] A-to-B data flow is shown: B-to-A flow is similar but uses OEBA, LEBA, and CLKBA.



[‡] Output level before the indicated steady-state input conditions were established

[§] Output level before the indicated steady-state input conditions were established, provided that CLKAB was low before LEAB went low

SN54ALVTH16500, SN74ALVTH16500

logic diagram (positive logic)

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage range, V _{CC} –0.5 V	to 4.6 V
Input voltage range, V _I (see Note 1)	V to 7 V
Voltage range applied to any output in the high state or power-off state, V _O (see Note 1) −0.5 ′	V to 7 V
Output current in the low state, IO: SN54ALVTH16500	96 mA
SN74ALVTH16500	128 mA
Output current in the high state, I _O : SN54ALVTH16500	–48 mA
SN74ALVTH16500	–64 mA
Input clamp current, I_{IK} ($V_I < 0$)	-50 mA
Output clamp current, I _{OK} (V _O < 0)	-50 mA
Maximum power dissipation at T _A = 55°C (in still air) (see Note 2): DGG package	1 W
DGV package	1 W
DL package	. 1.4 W
Storage temperature range, T _{stq} 65°C to	o 150°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

^{2.} The maximum package power dissipation is calculated using a junction temperature of 150°C and a board trace length of 750 mils. For more information, refer to the Package Thermal Considerations application note in the ABT Advanced BiCMOS Technology Data Book.

NOTES: 1. The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.

SCES069A - JUNE 1996 - REVISED JULY 1996

recommended operating conditions, $V_{\mbox{CC}}$ = 2.5 V \pm 0.2 V (see Note 3)

			SN54ALVT	H16500	SN74ALVT	H16500	UNIT
			MIN	MAX	MIN	MAX	UNIT
Vcc	Supply voltage		2.3	2.7	2.3	2.7	V
VIH	High-level input voltage		1.7		1.7		V
V_{IL}	Low-level input voltage			0.7		0.7	V
٧ _I	Input voltage		0	5.5	0	5.5	V
lOH	High-level output current			-6		-8	mA
10.	Low-level output current			6		8	mA
lOL	Low-level output current; current duty cycle \leq 50%; f \geq	1 KHz		18		24	IIIA
Δt/Δν	Input transition rise or fall rate	Outputs enabled		10		10	ns/V
TA	Operating free-air temperature		-55	125	-40	85	°C

NOTE 3: Unused control inputs must be held high or low to prevent them from floating.

recommended operating conditions, $V_{\mbox{\footnotesize{CC}}}$ = 3.3 V \pm 0.3 V (see Note 3)

			SN54ALVT	H16500	SN74ALVT	H16500	UNIT
			MIN	MAX	MIN	MAX	UNIT
VCC	Supply voltage		3	3.6	3	3.6	V
V_{IH}	High-level input voltage		2		2		V
V _{IL}	Low-level input voltage			0.8		0.8	V
٧ _I	Input voltage		0	5.5	0	5.5	V
ІОН	High-level output current			-24		-32	mA
lai	Low-level output current			24		32	mA
IOL	Low-level output current; current duty cycle ≤ 50%; f ≥	1 KHz		48		64	IIIA
Δt/Δν	Input transition rise or fall rate	Outputs enabled		10		10	ns/V
TA	Operating free-air temperature		-55	125	-40	85	°C

NOTE 3: Unused control inputs must be held high or low to prevent them from floating.

SCES069A - JUNE 1996 - REVISED JULY 1996

electrical characteristics over recommended operating free-air temperature range, V_{CC} = 2.5 V \pm 0.2 V (unless otherwise noted) (see Figure 1)

PARAMETER	TEG	CONDITIONS		SN54A	LVTH16	500	SN74A	LVTH165	500	UNIT
PARAMETER	1531	CONDITIONS		MIN	TYP†	MAX	MIN	TYP [†]	MAX	UNII
VIK	$V_{CC} = 2.3 \text{ V},$	I _I = -18 mA				-1.2			-1.2	V
	$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V},$	$I_{OH} = -100 \mu A$		V _{CC} -0.2			V _{CC} -0.2			
Voн	V _{CC} = 2.3 V	$I_{OH} = -6 \text{ mA}$		1.7						V
	VCC = 2.3 V	$I_{OH} = -8 \text{ mA}$					1.7			
	$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V},$	$I_{OL} = 100 \mu\text{A}$				0.2			0.2	
		IOL = 6 mA				0.5				
VOL	V _{CC} = 2.3 V	$I_{OL} = 8 \text{ mA}$							0.5	V
	VCC = 2.3 V	I _{OL} = 18 mA				0.5				
		I _{OL} = 24 mA	1						0.5	
	$V_{CC} = 2.7 \text{ V},$	V _I = GND	Control inputs			±1			±1	
 	$V_{CC} = 0 \text{ or } 2.7 \text{ V},$	V _I = 2.7 V	Control inputs			10			10	μΑ
"	V _{CC} = 2.7 V	VI = VCC	VCC A or B ports			10			10	10 part
	VCC = 2.7 V	V _I = 0				- 5			– 5	
l _{off}	$V_{CC} = 0$,	V_I or $V_O = 0$ to	4.5 V			±100			±100	μΑ
	V _{CC} = 2.3 V	V _I = 0.7 V			90			90		
l _l (hold)		V _I = 1.7 V	A or B ports		75			75		μΑ
	$V_{CC} = 2.7 V^{\ddagger}$,	$V_{I} = 0 \text{ to } 2.7 \text{ V}$								
I _{EX} §	$V_{CC} = 2.3 \text{ V},$	$V_0 = 3.6 \text{ V}$								μΑ
IOZ(PU/PD)¶	$V_{CC} \le 1.2 \text{ V},$ $V_I = \text{GND or } V_{CC},$	$\frac{\text{VO}}{\text{OE}/\text{OE}} = 0.5 \text{ V to V}$				±100			±100	μΑ
			Outputs high		0.04	0.09		0.04	0.09	
lcc	$V_{CC} = 2.7 \text{ V}, I_{O} = 0$,	Outputs low		2.3	4.5		2.3	4.5	mA
icc	$V_I = V_{CC}$ or GND		Outputs disabled		0.04	0.09		0.04	0.09	1117 (
C _i	$V_{CC} = 2.5 \text{ V},$	V _I = 2.5 V or 0			3			3		pF
C _{io}	V _{CC} = 2.5 V,	$V_0 = 2.5 \text{ V or } 0$			9			9		pF

[†] All typical values are at $V_{CC} = 2.5 \text{ V}$, $T_A = 25^{\circ}\text{C}$.

[‡] This is the bus-hold maximum dynamic current required to switch the input from one state to another.

SCES069A - JUNE 1996 - REVISED JULY 1996

electrical characteristics over recommended operating free-air temperature range, V_{CC} = 3.3 V \pm 0.3 V (unless otherwise noted) (see Figure 2)

DADAMETED	TEG	T CONDITIONS		SN54A	LVTH16	500	SN74A	LVTH16	500	LINIT	
PARAMETER	159	T CONDITIONS		MIN	TYP [†]	MAX	MIN	TYP [†]	MAX	UNIT	
٧ıK	V _{CC} = 3 V,	I _I = -18 mA				-1.2			-1.2	V	
	$V_{CC} = 3 \text{ V to } 3.6 \text{ V},$	I _{OH} = -100 μA		V _{CC} -0.2			V _{CC} −0.2				
Voн	VCC = 3 V	$I_{OH} = -24 \text{ mA}$		2						V	
	ACC = 2 A	$I_{OH} = -32 \text{ mA}$					2				
	$V_{CC} = 3 \text{ V to } 3.6 \text{ V},$	$I_{OL} = 100 \mu\text{A}$				0.2			0.2		
		I _{OL} = 16 mA							0.4		
V		I _{OL} = 24 mA				0.5				V	
VOL	V _{CC} = 3 V	I _{OL} = 32 mA							0.5	V	
		I _{OL} = 48 mA				0.55					
		$I_{OL} = 64 \text{ mA}$							0.55		
	$V_{CC} = 3.6 \text{ V}, V_I = V_I$	/CC or GND	Control inputs			±1			±1		
	$V_{CC} = 0 \text{ or } 3.6 \text{ V},$	V _I = 5.5 V	Control inputs			10		-	10		
IJ		V _I = 5.5 V				20			20	μΑ	
	V _{CC} = 3.6 V	$V_I = V_{CC}$	A or B ports			10			10		
		V _I = 0				- 5			- 5		
l _{off}	$V_{CC} = 0$,	V_I or $V_O = 0$ to	4.5 V			±100			±100	μΑ	
	V2V	V _I = 0.8 V		75			75				
l _{l(hold)}	VCC = 3 V	V _I = 2 V	A or B ports	-75			-75			μΑ	
	$V_{CC} = 3.6 V^{\ddagger}$,	V _I = 0 to 3.6 V				±500			±500		
I _{EX} §	V _{CC} = 3 V,	V _O = 5.5 V				125			125	μΑ	
I _{OZ(PU/PD)} ¶	$V_{CC} \le 1.2 \text{ V},$ $V_I = \text{GND or } V_{CC},$	$\frac{V_O}{OE/OE} = 0.5 \text{ V to V}$	CC [,] care			±100			±100	μΑ	
	·		Outputs high		0.07	0.09		0.07	0.09		
loo	$V_{CC} = 3.6 \text{ V}, I_{O} = 0$),	Outputs low		3.2	5		3.2	5	mA	
Icc			Outputs disabled		0.07	0.09		0.07	0.09	IIIA	
Δl _{CC} #	$V_{CC} = 3 \text{ V to } 3.6 \text{ V},$ Other inputs at V_{CC} of	One input at Voor GND	CC -0.6 V,			0.2			0.2	mA	
C _i	V _{CC} = 3.3 V,	V _I = 3.3 V or 0			3			3		pF	
C _{io}	$V_{CC} = 3.3 \text{ V},$	$V_{O} = 3.3 \text{ V or } 0$)		9			9		pF	

[†] All typical values are at $V_{CC} = 3.3 \text{ V}$, $T_A = 25^{\circ}\text{C}$.

[‡] This is the bus-hold maximum dynamic current required to switch the input from one state to another.

 $[\]S$ Current into an output in the high state when $V_O > V_{CC}$

[¶] High-impedance state during power up/high-impedance state during power down

[#]This is the increase in supply current for each input that is at the specified TTL voltage level rather than VCC or GND.

PRODUCT PREVIEW

timing requirements over recommended operating free-air temperature range, V_{CC} = 2.5 V \pm 0.2 V (unless otherwise noted) (see Figure 1)

			SN54ALVTH16500 SN74ALVTH16500		H16500	UNIT	
			MIN	MAX	MIN	MAX	UNII
fclock	Clock frequency		0	150	0	150	MHz
	Dulas direction	LE high	1.5		1.5		
t _w	Pulse duration	CLK high or low	1.5		1.5		ns
		A or B before CLKAB↓, Data high	2.3		2.3		
	Catura tima	A or B before CLKBA↓, Data low	3.4		3.4		ns
t _{su}	Setup time	A or B before LE↓, CLK high	-0.4		-0.4		
		A or B before LE↓, CLK low	0.9		0.9		
		A or B after CLK↓, Data high	0		0		
	Hold time	A or B after CLK↓, Data low	-0.7		-0.7		20
t _h	th Hold time	A or B after LE↓, CLK high	2		2		ns
		A or B after LE↓, CLK low	0.3		0.3		

timing requirements over recommended operating free-air temperature range, V_{CC} = 3.3 V \pm 0.3 V (unless otherwise noted) (see Figure 2)

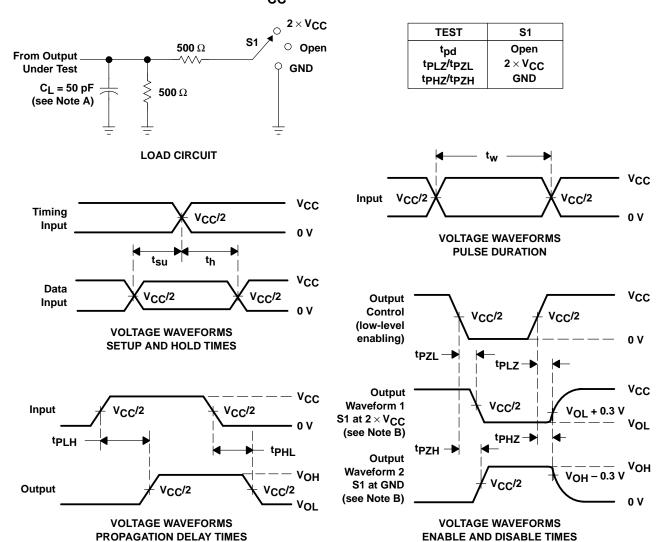
			SN54ALVT	H16500	SN74ALVT	H16500	UNIT
			MIN	MAX	MIN	MAX	UNIT
fclock	Clock frequency		0	150	0	150	MHz
	Pulse duration CL Ac	LE high	1.5		1.5		20
l t _w		CLK high or low	1.5		1.5		ns
		A or B before CLKAB↓, Data high	1.9		1.9		
1.	Catura tima	A or B before CLKBA↓, Data low	2.5		2.5		ns
t _{su}	Su Setup time	A or B before LE↓, CLK high	0		0		
		A or B before LE↓, CLK low	0.3		0.3		
		A or B after CLK↓, Data high	0		0		
 .	t _h Hold time	A or B after $\overline{CLK} \downarrow$, Data low	0		0		ne
l 'h		A or B after LE↓, CLK high	1.8		1.8		ns
		A or B after LE↓, CLK low	1.2		1.2		

SCES069A - JUNE 1996 - REVISED JULY 1996

switching characteristics over recommended operating free-air temperature range, C_L = 50 pF, V_{CC} = 2.5 V \pm 0.2 V (unless otherwise noted) (see Figure 1)

PARAMETER	FROM	то	SN54ALVT	SN54ALVTH16500		SN74ALVTH16500		
PARAMETER	(INPUT)	(OUTPUT)	MIN	MAX	MIN	TYP	MAX	UNIT
f _{max}			150		150			MHz
	B or A	A or B	1	5	1	2.5	4.5	
t _{pd}	LEBA or LEAB	A or B	2	7.2	2	3.8	6.5	ns
	CLKBA or CLKAB	A or B	2	7.7	2	3.2	7	
t _{en}	OEBA or OEAB	A or B	2.5	7.7	2.5	4.8	6.9	ns
t _{dis}	OEBA or OEAB	A or B	3	7.7	3	4.1	6.9	ns

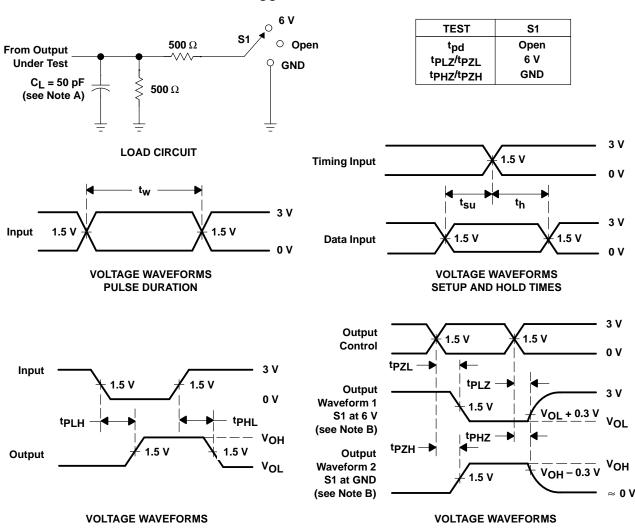
[†] All typical values are at $V_{CC} = 2.5 \text{ V}$, $T_A = 25^{\circ}\text{C}$.


switching characteristics over recommended operating free-air temperature range, C_L = 50 pF, V_{CC} = 3.3 V \pm 0.3 V (unless otherwise noted) (see Figure 2)

DADAMETED	FROM	то	SN54ALVTH16500		SN74	UNIT		
PARAMETER	(INPUT) (OUTPUT)	(OUTPUT)	MIN	MAX	MIN	TYP‡	MAX	וואט
f _{max}			150		150			MHz
	B or A	A or B	1	3.4	1	2	3.1	
t _{pd}	LEBA or LEAB	A or B	1.5	6	1.5	3.2	5.4	ns
	CLKBA or CLKAB	A or B	1.5	4.8	1.5	2.6	4.3	
t _{en}	OEBA or OEAB	A or B	1.5	6.2	1.5	3.5	5.6	ns
t _{dis}	OEBA or OEAB	A or B	2	5.5	2	3.2	4.9	ns

[‡] All typical values are at $V_{CC} = 3.3 \text{ V}$, $T_A = 25^{\circ}\text{C}$.

PARAMETER MEASUREMENT INFORMATION V_{CC} = 2.5 V \pm 0.2 V


NOTES: A. C_L includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, $Z_{O} = 50 \Omega$, $t_{f} \leq 2.5$ ns. $t_{f} \leq 2.5$ ns.
- D. The outputs are measured one at a time with one transition per measurement.
- E. tpLZ and tpHZ are the same as tdis.
- F. tpZL and tpZH are the same as ten.
- G. tpLH and tpHL are the same as tpd.

Figure 1. Load Circuit and Voltage Waveforms

SCES069A - JUNE 1996 - REVISED JULY 1996

PARAMETER MEASUREMENT INFORMATION V_{CC} = 3.3 V \pm 0.3 V

PROPAGATION DELAY TIMES INVERTING AND NONINVERTING OUTPUTS

ENABLE AND DISABLE TIMES LOW- AND HIGH-LEVEL ENABLING

NOTES: A. C_I includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, $Z_O = 50 \Omega$, $t_f \leq$ 2.5 ns, $t_f \leq$ 2.5 ns.
- D. The outputs are measured one at a time with one transition per measurement.
- E. tpLz and tpHz are the same as tdis.
- F. tpzL and tpzH are the same as ten.
- G. tpLH and tpHL are the same as tpd.

Figure 2. Load Circuit and Voltage Waveforms

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any semiconductor product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

TI warrants performance of its semiconductor products and related software to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

Certain applications using semiconductor products may involve potential risks of death, personal injury, or severe property or environmental damage ("Critical Applications").

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS.

Inclusion of TI products in such applications is understood to be fully at the risk of the customer. Use of TI products in such applications requires the written approval of an appropriate TI officer. Questions concerning potential risk applications should be directed to TI through a local SC sales office.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards should be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or services described herein. Nor does TI warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used.

Copyright © 1996, Texas Instruments Incorporated